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It is the fact of space that creates the special relation between function and social meaning
in buildings. The ordering of space in buildings is really about the ordering of relations be-
tween people. Because this is so, society enters into the very nature and form of buildings.
They are social objects through their very form as objects. Architecture is not a ’social art’
simply because buildings are important visual symbols of society, but also because, through
the ways in which buildings, individually and collectively, create and order space, we are
able to recognise society: that it exists and has a certain form. — Hillier and Hanson
1989, The social logic of space



Abstract

Traditional architectural practices often rely on creative intuition and experience rather
than systematic analysis and data-driven decision making. With the increasing availabil-
ity of computational tools and data science techniques, there is an opportunity to bring
mathematical and computer science concepts and methods into the architectural context
to challenge traditional practices and offer potential improvements. This thesis explores
the application of graph theoretical and topological concepts in architecture and investi-
gates the use of graph machine learning methods in the context of architectural analysis,
with a particular focus on energy efficiency as a key performance metric. To this end, a
synthetic architectural dataset containing geometric, categorical, dimensional, energetic,
topological and relational information is generated by integrating various space partition-
ing algorithms combined with architectural control functions into an automated genera-
tion pipeline. Subsequently, a classification model and a regression model are trained on
the generated knowledge graph dataset to evaluate the prediction and classification accu-
racy in terms of energy efficiency. The resulting dataset and the code for generating and
training the model will be made publicly available to further research in the field of graph
machine learning in architectural applications. This research demonstrates the potential
of a closer integration of various mathematical concepts and computer science methods
into the architectural design and verification process, and shows the potential of applying
knowledge graphs for the abstraction, representation and analysis of architectural objects.

Keywords — Architecture, Graph Theory, Topology, Machine learning, Simulation
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Resumé

Les pratiques architecturales traditionnelles s’appuient souvent sur l’intuition créative et
l’expérience plutôt que sur l’analyse systématique et la prise de décision fondée sur des
données. Avec la disponibilité croissante d’outils informatiques et de techniques de science
des données, il est possible d’introduire des concepts et des méthodes mathématiques et
informatiques dans le contexte de l’architecture afin de remettre en question les pratiques
traditionnelles et d’offrir des améliorations potentielles. Cette thèse explore l’application
de la théorie des graphes et des concepts topologiques à l’architecture et étudie l’utilisation
des méthodes d’apprentissage automatique des graphes dans le contexte de l’analyse archi-
tecturale, avec un accent particulier sur l’efficacité énergétique en tant que mesure clé de la
performance. À cette fin, un ensemble de données architecturales synthétiques contenant
des informations géométriques, catégorielles, dimensionnelles, énergétiques, topologiques
et relationnelles est généré en intégrant divers algorithmes de partitionnement de l’espace
combinés à des fonctions de contrôle architectural dans un système de génération automa-
tisé. Ensuite, un modèle de classification et un modèle de régression sont entraînés sur
l’ensemble de données graphique de connaissances généré afin d’évaluer la précision de
la prédiction et de la classification en termes du rendement énergétique. L’ensemble de
données résultant et le code de génération et d’entraînement du modèle seront mis à la
disposition du public pour faire avancer la recherche dans le domaine de l’apprentissage
automatique des graphes dans les applications architecturales. Cette recherche démontre
le potentiel d’une intégration plus étroite de divers concepts mathématiques et de méth-
odes informatiques dans le processus de conception et de vérification architecturales, et
montre le potentiel de l’application de graphes de connaissances pour l’abstraction, la
représentation et l’analyse d’objets architecturaux.

Mots-clés — Architecture, Théorie des graphes, Topologie, Apprentissage automatique, Sim-
ulation
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Chapter 1

Introduction

1.1 Digitalisation in Architecture
In recent decades, advances in technology and digitalisation have led to significant changes
in a wide range of professions. Creative fields such as art and design have benefited sig-
nificantly from the application and integration of various computer- or algorithm-based
methods. Architecture, as a discipline at the intersection of technology and artistic prac-
tice, plays an interesting role in the adaptation of digital processes1. Whereas a few
decades ago the profession of architecture was characterised by pencil and paper, today
the mouse and computer screen constitute the principal working tools in the architectural
design process.

This is only the visible surface of the digitisation of the architectural profession, as the
entire working process of architects has been automated, optimised and structured by
computer-based tools. With the development of computer-aided design methods such
as BIM or more broadly CAD, the static, inflexible nature of representation methods in
architecture has been remedied, opening up a wide range of new possibilities in all design
phases. Today, a complete design process in a multi-dimensional environment is the
norm, allowing the simulation, integration and manipulation of three-dimensional models
in conjunction with information on materials, dimensions, construction details and many
more. A constant back and forth between conceptual design decisions and construction
details is thus largely seamless and is evident in many contemporary designs2 based on
the fusion of detail and creative or programmatic intent.

If we look at the history of architecture, it becomes clear how closely mathematics and
architecture are intertwined, for example in the programmatic conception of projects or in
the application of geometric rules at the plan level. However, it also becomes apparent that
this interplay usually manifests itself at a highly theoretical level3 and thus often has little
tangible impact on the habitability of architectural objects, which can be explained by the
lack of accessibility of fundamental mathematical concepts for architects. Therefore, in the
design reality, there is unfortunately still a certain distance between useful mathematical
concepts and their concrete, beneficial application in the conception phase. Concepts
such as topology and graph theory are almost exclusively found at a very scientific level

1Chaillou 2022, Artificial Intelligence and Architecture: From Research to Practice.
2Pena et al. 2021, “Artificial intelligence applied to conceptual design. A review of its use in archi-

tecture”.
3Baglivo and Graver 1983, Incidence and symmetry in design and architecture.
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in academia and are therefore difficult to access for traditional or less privileged offices
with limited scientific resources.

The application of computational scientific methods4, on the other hand, appears to have
become more democratic with the widespread adoption of market-leading architectural
software and the availability of third-party extensions. However, only a minority of tradi-
tional architectural practices have a clear overview of machine learning-based tools, and
even fewer know how they work or how to make sense of them. In addition, such tools are
often embedded in specific software, making interoperability difficult and thus becoming
a software-specific feature. It is precisely this lack of clarity about the tools supported by
artificial intelligence that hinders the general adaptation of such useful functionalities and
contributes to the inequality between underprivileged architecture firms and the monopoly
position of dominant proprietary architecture software. One possible reason for this sit-
uation is the need for essential resources for the development of such machine learning
based models, such as time, economic resources such as budget, energy and computing
power, but also access to adapted, evaluated and diverse training datasets.

1.2 Current Challenges
Need for a Universal Space Syntax Language The lack of a universal spatial
syntax language in architectural design hinders the development of standardised guidelines
and theoretical foundations. This results in arbitrary topological relationships between
individual architectural elements, which can lead to inconsistencies and inefficiencies in
design. A universal language would allow for better communication and understanding
within the field and ultimately contribute to a more effective design practice. Furthermore,
the skillful application of spatial syntax theories during the design process would lead to
an increase in architectural quality during the occupancy of the constructed objects.

Limited Design Feedback During Early Project Stages Current design practices
often lack feedback in the early stages5, leading to arbitrary decisions and potential incon-
sistencies between initial drafts and detailed elaborations. Implementing a system that
provides feedback throughout the design process on various parameters, such as perfor-
mance or architectural feasibility, would allow architects to make more informed decisions
and balance the creative and technical aspects of their projects.

Special Training and Computationally Intensive Simulations The setup and ex-
ecution of complex physical simulations and intelligent CAD tools can be demanding and
laborious, requiring special training and significant computational power6. This makes
it difficult for non-specialist users to obtain accurate results and prevents continuous
verification during the design process.

Need for Mathematical Foundations in Relationship Descriptions Understand-
ing the spatial structuring and programmatic aspects of architecture requires research into
the mathematical foundations of relational descriptions. By developing analysis methods

4Caetano, Luís Santos, and Leitao 2020, “Computational design in architecture: Defining parametric,
generative, and algorithmic design”.

5Paterson et al. 2013, “Real-time Environmental Feedback at the Early Design Stages”.
6Chatzivasileiadi et al. 2018, “The effect of reducing geometry complexity on energy simulation re-

sults”.
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based on such topological properties that can accurately represent and concretise pro-
grammatic intentions, architects can more effectively optimise spatial organisation, energy
efficiency, natural lighting and load-bearing capacity.

Lack of Publicly Available Graph Datasets There is currently a significant gap
in the availability of comprehensive graph datasets based on architectural objects7. This
poses a challenge to researchers who need reliable data for algorithm development and
testing. The creation and publication of such datasets would enable the academic commu-
nity to make more substantial advances in the field and ultimately improve the traditional
architecture practice.

Poor Application of Topological Concepts Conventional architectural projects of-
ten struggle to apply topological concepts effectively, making it difficult to automatically
integrate and query rule-based information in Building Information Modelling. Address-
ing this issue would help to ensure a coherent spatial design and improve overall project
outcomes.

Data Form-Specific Challenges Architectural objects can be represented through
various media, but reducing them to a single one often leads to a loss of information.
Developing machine learning models that can efficiently manage diverse datasets and
account for origin bias in architectural training data would help to ensure more meaningful
and context relevant suggestions in the design processes.

1.3 Contribution
Feedback Loop in Early Design Stages This research contributes to the field by
exploring methods and ways to implement feedback loops in the initial design stages.
These feedback loops would allow architects to take decisions based on key parameters
such as energy consumption, ultimately leading to more efficient and sustainable building
designs and avoiding costly back and forth between detail drawing and conceptual design.

Exploration of Relational Datasets and Machine-Assisted Optimisation The
thesis investigates the need for relational datasets in graphical form to enable machine-
assisted optimisation of architectural parameters. It further explores the extraction of
insights through analysis methods based on graph based input data, providing a founda-
tion for further research and practical applications in this area.

Creation and Publication of an Architectural Graph Dataset To address the
lack of publicly available graph datasets based on architectural objects, this work con-
tributes by creating (chapter 4) and publishing (section 6.1) a comprehensive graph
dataset which can serve as a valuable resource for researchers and practitioners in ar-
chitecture and related fields.

Meta-Analysis of Open Source Tools in Architecture Furthermore, this research
includes a meta-analysis of open source tools available to the architectural community

7Alymani, Jabi, and Corcoran 2022, “Graph machine learning classification using architectural 3D
topological models”.
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(section A.3). By investigating and promoting open source file formats and software pack-
ages, the study aims to increase the interoperability of architectural data and encourage
freedom in the AEC industry.

Application of Graph Theory in Architecture An essential part of this work fo-
cuses on the detailed analysis of possible applications of graph-theoretical concepts in
the architectural context. For this purpose, the mathematical foundations are explained,
graph-based analysis methods and their advantages are reviewed, and a concrete applica-
tion of the theory is explored and evaluated in the experimental part of this thesis.

Analysis and Application of Topological Tools The thesis provides a thorough
analysis of existing architectural applications of topological tools and their potential for
graph-theoretic concepts. It explores the usefulness of topological transformations and
analysis methods, ultimately demonstrating the value of an integration into the architec-
tural practice.

Machine Learning Applications in Architecture The research further contributes
by exploring the application of machine learning in the architectural profession. Specifi-
cally, graph machine learning methods are developed for predicting energy consumption
and efficiency of architectural designs. This constitutes an essential step towards a closer
connection between new technological, scientific methods and traditional architectural
practices.

Generation of a Synthetic Architectural Dataset This work produces a synthetic
architectural dataset, generated using parametric algorithms and respecting architectural
rules while maintaining geometric variance. This dataset, published as an open source
resource, bridges the gap between different scientific fields, thus confirming the position of
architecture as a polyvalent science. Furthermore, the documentation and publication of
the generation pipeline is intended as a basis for subsequent work aiming at the generation
of synthetic architectural data.

1.4 Research Questions
Within the context described in the previous section, this manuscript identifies four main
research questions related to graphs and topology, feedback in early design stages, archi-
tecture and machine learning and synthetic architectural datasets. By exploring these
research questions, this manuscript aims to shed light on the potential benefits and chal-
lenges of integrating scientific and mathematical methods into architectural practice.
These research topics are examined in detail to provide insights into how they can be
applied to enhance creativity, coherence and efficiency in architectural design, as well as
to explore new possibilities for the field of AEC. The questions are as follows:

• What is the role and potential benefits of integrating knowledge graphs and topo-
logical methods into everyday architectural practice? How can abstract relational
information from graphs be meaningfully applied to project design, and what are
the challenges and opportunities that arise from its use?

• How can design feedback be provided in the early stages of the design process to
enhance creativity and coherence between initial design and detailed elaboration in
later project stages? What are the benefits and challenges of integrating indicative
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simulation variables in early design stages and what methods can be used to optimise
this process?

• What role can machine learning models play in architectural design and what are
their current practical and academic research applications? What potential benefits
can trained models provide for design feedback iteration, and how feasible is it
to use annotated graphs as input to machine learning methods for the abstract
representation of geometric information?

• How can architectural datasets be created synthetically and to what extent can
the information they contain be abstracted? What are the benefits, methods and
potential issues associated with automatic floor plan generation and its application
methods? Can synthetic dataset creation remedy origin bias and how can the
creative diversity and adaptability offered by automatic, regulated synthetic dataset
creation be evaluated?

1.5 Outline
This thesis is divided into two parts: Part I: Overview, which deals with the explanation
of the basic concepts as well as the state of the art, and part II: Contribution, which doc-
uments the experiments carried out along with their evaluation and conclusions. Finally,
part III of this thesis consists of the Appendix, which contains further reading, additional
information and code samples.

In Chapter 1: Introduction, the context for the study is set. Section 1.1: Digitalisa-
tion in Architecture discusses the increasing use of digital tools in everyday architectural
practice, followed by an overview of the current challenges associated with the digitali-
sation process in section 1.2. The contributions of this work are presented in section 1.3
and the research questions driving the study are outlined in section 1.4.

Chapter 2: Preliminaries delves into the basic concepts used throughout this study.
Section 2.1 introduces the principal concepts of graph theory, and its applications in
architecture are discussed in section 2.1.2. The topological analysis methods and tools
used in this work are covered in section 2.2. The role of simulation in architectural design
and the different possible applications are explored in section 2.3, with particular emphasis
on energy performance and optimisation methods in sections 2.3.1 and 2.3.2.

Chapter 3: State of the Art reviews the literature on graphs and topology in archi-
tecture in section 3.1, feedback in early design stages in section 3.2), architecture and
machine learning in section 3.3, and synthetic architecture datasets in section 3.4.

Chapter 4: Synthetic Dataset Generation details the process of generating a syn-
thetic graph dataset based on architectural objects for subsequent use in this study. It
includes discussions on different space partitioning algorithms in section 4.1, the integra-
tion into a parametric generation framework (section 4.2), the application of architectural
rules (section 4.3) and post-processing techniques such as information annotation, en-
ergy performance simulation, data mapping and graph retrieval detailed in sections 4.4.1
to 4.4.4. The chapter concludes with an evaluation of the results in section 4.5 and a
discussion about synthetic data generation in section 4.5.2.

Chapter 5: Graph Machine Learning presents the structure and hyperparameters
(sections 5.1 and 5.2) of the proposed graph-based machine learning approach, as well
as the evaluation metrics used for classification and regression tasks in sections 5.3.1 and
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Figure 1.1: Graph Structure

5.3.2. This explanation is followed by the introduction of the comparative framework of
both models in section 5.3.3. The results and comparison of the different methods are
presented in section 5.4, where conclusions about the results of each model are drawn in
sections 5.4.2.2 and 5.4.3.2.

Finally, Chapter 6: Conclusion and Future Perspectives summarises the contribu-
tions and provides answers to the previously announced research questions in sections 6.1
and 6.2. This is followed by an outline of the learned lessons, future research directions,
limitations, added value for architects and concluding remarks (sections 6.1 to 6.6). The
manuscript concludes with a bibliography and two appendices: A and B, where the first
part of the appendix provides additional content such as further literature, a proposal for
a potential application of the experimental results, and a discussion on the topic of open
source in the AEC industry (sections A.1 to A.3). The part B of the appendix presents
and explains the raw data, divided into geometrical, graphical and informational data in
sections B.1 to B.3.
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Chapter 2

Preliminaries

This chapter introduces the basics for understanding the essential concepts and terminol-
ogy. First, a step-by-step description is given of what graph theory defines and what the
properties and components of graph structures are. Then, the described concepts and
characteristics are examined in their application in the architectural context, where the
digital modelling process as such is considered, but also a variety of different graph-based
analysis methods and their advantages are explained. Finally, in the context of graph
theory, graph-based machine learning is introduced and its functionality, structure and
application are explained.

The following section focuses on the introduction of the term topology in a mathematical
and architectural context. For this purpose, the topological analysis method is explained
using the Python library TopologicPy and its structure. Then the main concepts of space
syntax theory are recapitulated and illustrated with examples, followed by an explana-
tion of the concept and use of shape grammar implementations. This section concludes
with a consideration of the basic concepts of different spatial partitioning methods with
their respective advantages and disadvantages in the application of automatic floor plan
generation.

The last section of the contribution chapter deals with the explanation of the concept
of simulation and its different variants as well as possible applications. After a detailed
description of the main simulation applications in architecture and engineering, the focus
is on energy performance simulation. Finally, different optimisation families and their
essential algorithms and functionalities are explained.

2.1 Graph Theory
Graph networks and their derivatives surround us in our everyday lives and influence us on
a wide variety of levels. Yet this simple mathematical concept seems to be considered only
rarely or at a highly academic level. When considering the fastest geographical route from
point A to point B, or how many rooms in a Renaissance castle have to be traversed to get
from the reception atrium to the noble chambers, these are graph-theoretical questions
that can be solved through established mathematical methods.

Historically, the study of graph theory can be traced back to a problem known as the
Königsberg Bridge problem. It is an urban connection problem involving the city of
Königsberg, through which the river Pregel flows (figure 2.1). The city consisted of two
main islands in the middle of the river and also extended on both sides of the riverbeds,
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(a) Connection Graph (b) Simplified Representation

Figure 2.1: Königsberg Bridge Problem

being connected by exactly seven bridges as shown in figure 2.1a. The question that led
to this famous problem1 was whether it was feasible to cross each bridge exactly once and
arrive back at the end of the path precisely at the starting point. On a mathematical
level, it is a question of traversing the represented network consisting of points and their
connections only once, but not repeatedly.

A closer look at this example reveals that the nodes represented are not defined by their
geographical position, but only by their relationship or connection to the other points of
the network (figure 2.1b). This demonstrates one of the fundamental characteristics of
graph structures.

Applications of graph theory can be found in a variety of ways in many fields, such as
the analysis and representation of molecular structures in chemistry, where individual
atoms represent the nodes and the edges represent the respective compounds to which
the molecules owe, among other things, their chemical properties. Another well-known
example is the representation of social networks, where the nodes represent single in-
dividuals or groups and the edges between them model their relationships. Areas such
as transportation networks, traffic infrastructures, computer programs, data structures,
financial markets, economic systems and ecological biospheres or phylogenetic trees are
also well known and intuitive applications of practical graph theory.

2.1.1 Graphs
But what makes a graph a graph? What is its basic structure and what are its properties?
First of all, it is important to establish a general definition of a graph in order to explain
and make intelligible its properties and functions in the following steps. A graph is a
mathematical object from discrete mathematics and combinatorics which is composed of

1Kantor 2005, “A tale of bridges: topology and architecture”.

10



Figure 2.2: Graph Network

a finite, non-empty set of nodes, also called vertices, and a finite, unordered set of edges.
Vertices represent points in the graph structure which may be connected by edges.

Since graphs are dimensionally independent, a visualisation of their structure is often
misleading, as edges may appear to intersect when in fact they exist completely indepen-
dently, or vertices may be positioned locally adjacent to each other, but without having
any commonality with each other. This abstraction and deceptive dimensionality becomes
particularly important to internalise when graph structures are related to geometric ob-
jects. As can be seen in figure 2.2, the complexity of the two-dimensional representation
of graph structures increases significantly as soon as a certain number of nodes and edges
is exceeded. Usually, vertices and edges are labelled with letters or numbers in order to
refer to them individually.

In addition, edges can be unidirectional or bidirectional, meaning that there is a one-
way or two-way relationship of the two connected vertices to each other. This is usually
represented by arrows along or on the edges (figure 2.3). Once a graph structure has one
or more edges with a specific direction, it is called a directed graph, which distinguishes it
from an undirected graph. Another special property of edges in a graph is that they can
be weighted, which means that a hierarchy can be created between the edges and thus
the designation of the graph changes from unweighted to weighted graph (figure 2.5).
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Figure 2.3: Directed Graph

Regarding the naming convention2, in mathematical terminology a graph is described by a
G and contains vertices V (G) with their corresponding edge set E(G), so G = (V,E). An
edge consists of a vertex pair e = (u, v) and is usually abbreviated to uv. For undirected
edges e = (u, v) and e = (v, u) holds, since an edge connecting vertex u to vertex v also
connects vertex v to u. The number of vertices in G is notated as |V | and the set of edges
as |E|.

2.1.1.1 Components

A graph consists of two basic components, which have already been introduced as nodes
and edges. Nodes, or vertices, are the basic units of the graph and are usually labelled
with a unique identifier, such as a letter or number. The total number of nodes |V | in a
graph is called the order of the graph and is usually represented by the letter n.

Edges connect the nodes in the graph and provide information about which nodes are
directly connected. An edge is therefore defined by an ordered pair of connected nodes
and is often represented by the notation (u, v), where u and v are the two nodes connected
by the edge. If the graph is undirected, this means that the edge can be traversed in
either direction and is often written as (u, v) or (v, u). If the graph is directed, the edge
is represented by an arrow from u to v and is written as (u, v). The total number of
edges in a graph is called the size of the graph and is usually represented by the letter m.
For undirected graphs, the relation is m ≤ n ∗ (n − 1)/2, while for directed graphs it is
m ≤ n ∗ (n− 1)3.

There are several special cases for the two components of graph structures, such as isolated
nodes (figure 2.4b), which represent points that have no connection to other points of the
graph and thus have no edges. A special case for edges are loops, which have the same
start and end vertex and thus connect a node to itself: e = (u, u). Furthermore, two
points u and v can be connected by multiple edges, which means that E(G) contains
either (u, v) or (v, u) more than once (figure 2.4a). Multiple edges can occur in directed
graphs, but also in undirected graphs.

As already described by the possibility of weighting edges, information can be added to
the individual elements, since each element can be referenced precisely and independently.
For example, nodes can contain the names of individuals in a social network, or edges

2Wilson 1979, Introduction to graph theory.
3Earl and March 1979, “Architectural applications of graph theory”.
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(a) Multigraph (b) Isolated Node

Figure 2.4: Graph Variations

(a) Weighted Edges (b) Weighted Nodes

Figure 2.5: Weighted Graphs

can be classified into different categories, such as the type of relationship that different
actors in a play have with each other, such as related, in love, married, and so on. Value
notation is also possible, where individual nodes can be referenced by the age of the
people, or edges can hold the number of months in the relationship. A common example
of such graphical knowledge information is Zachary’s karate club4, which serves as an
example of how relational semantic information can be translated into graphical form.

Another component of a graph are subgraphs, which form a new graph structure from a
subset of the vertex set V (G) of the original graph G and contain the edges corresponding
to the vertices. Similarly, supergraphs are all graphs formed by adding vertices or edges to
a graph structure. This implies that if F is a subgraph of G, then G must be a supergraph
of F .

4Sanchez-Lengeling et al. 2021, “A gentle introduction to graph neural networks”.
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(a) Complete Graph (b) Bipartite Graph

Figure 2.6: Graph Properties

2.1.1.2 Properties

There exists a large variety of different forms and special cases in which graph networks
can occur. Directed graphs, also called digraphs, which are defined by the order of vertex
pairs, have already been introduced. Similarly, the properties of weighted graphs, which
are defined by adding a weight function w and thus formulated as G = (V,E,w), have
been explained. However, these two cases are far from being the only special cases of graph
structures. A graph can be called a complete graph if every single vertex is connected to
every other vertex by an edge (figure 2.6a), allowing the number of edges in a complete
graph to be calculated by the formula K(n) = n∗(n−1)/2 for undirected graphs. Another
subset is called a bipartite graph when the set of vertices of the graph can be divided into
two disjoint subsets such that each edge of the graph connects a vertex from the vertex
subset A to a vertex from the subset B (figure 2.6b). In this case, the bipartite graph can
be represented as G = (A,B,E), where A and B represent the two vertex subsets and E
is the edge set connecting A and B.

Another essential concept in graph theory are trees5 (figure 2.7b). They are circle-free
graphs in which there is no path from a vertex back to itself. Like conventional graphs,
they consist of a subset of vertices and edges, but the edges are directed, and so trees
are directed graphs. The analogy with biological trees is that there is only one vertex in
a graph tree, called the root, which marks the starting point of the tree. All vertices of
the object have exactly one parent node, except for the root node. However, each vertex
can have several child nodes. A well known variant of trees is the so-called binary trees,
which differs from conventional trees in that each vertex has only two child nodes.

Of interest in geometric representations of graphs are certain graph structures where, by
definition, no edge intersects when represented on a plane. This particular property of
graphs is called planar (figure 2.7a). In this case, the faces formed between the edges can

5Wilson 1979, Introduction to graph theory.
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(a) Planar Graph (b) Tree

Figure 2.7: Graph Properties

be considered, and it holds that the Euler characteristic described by |V | − |E| + |F |6
always gives 2 for planar graphs, where |F | is the number of faces formed by the edges and
|V | and |E| represent the number of vertices and edges. Planar graphs offer interesting
geometric interpretations and allow for an easy understanding once represented in the
two-dimensional space.

2.1.1.3 Representation

As previously mentioned, graphs are space-independent representations since the position
of vertices per se is not bound to local information and edges, contrary to intuitive in-
terpretation, do not represent a geometric connection between pairs of vertices, but only
their relationship to each other. Since we as individuals can only realise visual repre-
sentations in three dimensions, and in the case of immobile representations are generally
limited to two dimensions, a visual representation of spatially independent mathematical
concepts and objects, such as graphs, always involves a certain degree of abstraction. In
order to avoid misinterpretation of the information to be conveyed, it is important to
remain conscious of this abstraction when considering visualised graphical information,
especially when graphs are derived from geometric figures.

Numerical, tabular representations can counteract this risk of confusion by their inherently
abstract form of representation. However, this level of abstraction is a major drawback of
tabular representations of graph structures, since relationships between nodes are more
difficult to perceive and a greater amount of representative information is generally re-
quired. Whereas in a visual representation a non-existent edge is simply not drawn, in a
tabular representation a value is required to indicate its non-existence.

The main visual representations of simple graph structures are node diagrams (figure 2.9)
and their individual special cases such as binary trees or directed graphs. This type of
representation is particularly suitable for planar graphs and when it is necessary to quickly
convey an overview of the entire graph structure and the relationship of individual nodes.

6Dawes and Ostwald 2013, “Applications of graph theory in architectural analysis: past, present and
future research.”
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(a) Unordered Representation (b) Ordered Representation

Figure 2.8: Ordering of Graph Nodes

Figure 2.9: Graph Representation

There are no explicit visual rules for representing the various components of graphs, but it
is common to represent vertices as points or circles of the same size, and edge connections
as straight lines between points if possible, or curves if straight lines are not possible.
For directed edges and graphs, the orientation is usually symbolised by an arrow on the
edge7. As a general convention, there should be as few crossings between graph edges as
possible to avoid dimensional confusion (figure 2.8).

The most common numerical and tabular representations of graphs are the adjacency
matrix (table 2.1a), the adjacency list (table 2.1c), the incidence matrix (table 2.1b) or
the edge list (table 2.1d). Here, edge lists provide the most intuitive representation, since
it concerns simply a listing of the references to the individual vertex pairs connected
through edges.

A slightly modified form of this listing is the adjacency list, where for each vertex in
the graph the references of the vertices connected by edges are listed. Incidence and
adjacency matrices are two tabular forms of representing relational networks and differ

7Wilson 1979, Introduction to graph theory.

16



1 2 3 4 5 6
1 0 1 1 1 0 0
2 1 0 0 1 0 0
3 0 0 0 0 1 0
4 0 0 0 0 0 1
5 1 0 1 0 0 0
6 0 0 1 1 0 0

(a) Adjacency Matrix

a b c d e f g h
1 -1 1 0 1 1 0 0 0
2 0 0 0 1 0 0 1 0
3 0 -1 1 0 0 -1 0 0
4 0 0 0 0 -1 0 -1 1
5 1 0 1 0 0 0 0 0
6 0 0 0 0 0 1 0 1

(b) Incidence Matrix

1 2 4 3
2 1 4
3 5
4 6
5 3 1
6 4 3

(c) Adjacency List

(1,2) (1,4) (1,3) (2,1) (2,4) (3,5) (4,6) (5,3) (5,1) (6,3) (6,4)
(d) Edge List

Table 2.1: Numerical Representation Methods

mainly in that in the case of the adjacency matrix the rows and columns represent the
same vertices and thus always result in square tables, which are mirrored diagonally in
the case of undirected graphs. The values of the table are binary and indicate whether
an edge exists between the two reference vertices or not.

In the case of the incidence matrix, one row or column is the reference to the edges and
the other remains the reference to the individual vertices. If an edge j is connected to
vertex i, then the entry in the i-th row and j-th column of the incidence matrix is a 1 if
the edge is outgoing from vertex i, otherwise it is a -1 if the edge is incoming to vertex i.
All other entries are 0. An incidence matrix is usually used for directed graphs, but can
also be used for undirected graphs.

2.1.2 Graphs in Architecture
The application of graph theoretic methods of analysis has been an integral part of ar-
chitectural research since the beginning of the last century8. The discrete mathematical
concepts can be beneficially applied at various levels of design practice, providing in-
sight into spatial and relational structures that would be difficult to relate without their
intervention.

In concrete applications, graph theory can be used to analyse, optimise and plan designs
and buildings9. The use of graphs as a modelling tool also makes it possible to represent
and analyse complex structures10 such as road networks, public spaces or buildings in a
simplified form (figure 2.10 and 2.11). Both quantitative and qualitative aspects of the
structure can be considered, such as the length and temporal duration of paths, the num-
ber and type of connections, or the visual relationships between individual architectural
elements.

In academic architectural research, graph theory is also used to study the spatial properties
of buildings and urban spaces11. In doing so, it can help to study and understand the
structure and organisation of spaces as well as the relationships between them. It can

8Earl and March 1979, “Architectural applications of graph theory”.
9Dawes and Ostwald 2013, “Applications of graph theory in architectural analysis: past, present and

future research.”
10Lakshmi, Madhumathi, and Sindhuja 2017, “Graph theory and architecture”.
11Napong 2004, “The graph geometry for architectural planning”.
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Figure 2.10: Connectivity Graph of Palladio’s Villa La Rotonda

equally be used to analyse and evaluate urban design concepts or to develop new urban
designs.

The implementation of graph-theoretical methods in project elaboration at the conceptual
level can also play an important role, since the abstract and relational information of the
mathematical object can form an essential function in the development of programmatic
and structural organisation. In some projects, it may also be of great value to construct a
detailed social or biological network in order to understand, analyse and optimise existing
systems or desired relationships between individuals, groups of actors or families.

The potential of graphs to carry additional information at their nodes and edges is equally
shown to be of great value in the architectural context, as it becomes possible to add ge-
ometric, dimensional, physical or social information to the network, thus creating as rep-
resentative an image of reality as possible. In subsequent steps, this allows the simulation
and analysis of the effects of architectural interventions.

Graph theory can furthermore be usefully applied to the development of new structures.
By modelling the structure as a graph, the designer can test and evaluate different layouts
and configurations. For example, the number of connections or the length of paths can be
empirically evaluated to maximise the efficiency of the structure while satisfying aesthetic
and functional requirements.

A key aspect explored in this thesis in relation to graph structures in the architectural
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(a) Taj Mahal (b) Villa Savoye

Figure 2.11: Connectivity Graphs of Architectural Examples

design process is the analysis of spatial and elemental relationships. By defining spaces and
architectural components as nodes and their relationships to each other as edges, designers
can explore and understand these interconnections. This can be used, for example, to
represent and evaluate the visibility between different spaces, or to measure the efficiency
of the connections between them in order to achieve optimal spatial organisation.

2.1.2.1 Graphs in BIM

Building Information Model, or BIM, refers to the process of creating, managing and using
digital architectural models of buildings and architectural elements, in which all relevant
data, such as dimensions, materials, components, installations and technical systems, are
stored and linked in a central digital model. The aim of BIM is to optimise the planning
and construction of projects by bundling and coordinating the flow of information. By
using BIM, stakeholders involved in design and construction, such as architects, engineers
and contractors, can work more efficiently and collaboratively, reducing errors and costs
through centralised data exchange and reconciliation.

An essential aspect of the concept described is interoperability between the parties in-
volved, but also data exchange between established architecture and engineering software
solutions. To ensure this, open standards such as the IFC file format are often used,
which, due to its open source characteristics, allows data to be shared between different
BIM software tools and to be read and processed optimally. Developed and maintained
by the BuildingSMART International organisation, the IFC file format, which stands for
Industry Foundation Classes, is a human-readable text file containing structured and hier-
archically categorised information about the given architectural object. The information
contained and stored is object-oriented and can therefore assign an unlimited number of
attributes to a wide range of constructive entities.

Elements in IFC projects can be of diverse nature, such as project sites, levels, walls,
ceilings, windows and doors, and attributes can be attached as information about these
individual elements, such as a description of their materials, dimensions and relation-
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ships to each other12. The direct implementation of graphical relationship descriptions in
BIM modelling processes has not yet been established, partly due to the aforementioned
representation difficulties caused by their abstract structure. However, looking at the
compositional logic of IFC file types and their application in everyday architecture, it
becomes clear that the integration of graphical representations could be of great benefit
for collaboration and analysis capabilities.

Due to their hierarchical structure of interrelated objects, Industry Foundation Classes
lend themselves as BIM models to representing the objects as nodes and the relation-
ships between them as edges. This graphical representation allows additional relational
information, such as local distances or conceptual links, to be embedded in the basic
hierarchical structure of the file format. The integration of such graph-based representa-
tions could be then used to analyse and optimise aspects of building design such as space
planning, energy and resource optimisation. Such integration would provide a variety of
new automatable analysis capabilities and enable additional levels of abstraction in the
architectural design process.

2.1.2.2 Graph Analysis

In addition to their organisational and hierarchical capabilities, graph elements offer a
variety of different analytical methods that can be of significant use in the design process
as well as in the optimisation phase of architectural, urban or landscape projects. In order
to provide an overview of these analysis methods, the most important ones are presented
and demonstrated in order to evaluate the usefulness of graphs in the field of Architectural
Engineering and Construction.

Space Syntax Analysis Space syntax analysis methods13 are a set of tools that allow
the structure of an architectural object to be considered in terms of its social role. This
means observing how and through what interactions the structure of a building influences
the human use of a space. This allows architects and designers to optimise the connections
between spaces, as well as the arrangement of doors and passages, to make the pathways
and connections within a building more effective in their use of space and more user-
friendly.

Visibility Graph Analysis By analysing visibility graphs14 (figure 2.12), conclusions
can be drawn about spatial perception at the human level. In this way, certain aspects
such as privacy, openness towards public spaces and accessibility can be analysed and
optimised in order to provide the most appropriate spatial perception. The Visibility
Graph Analysis (VGA) method is used to create visibility maps that assign values to the
entire surface of the objects being analysed, providing information on how observable they
are from all other points in the space.

Graph Clustering Unlike the previous methods, graph clustering (figure 2.13) is an
abstract form of analysis in architectural applications. Once a network has been created
based on geometric or topological concepts, it can be divided into individual subgroups
by observing the clustering coefficient of the nodes. This allows the designer to abstract

12Schultz and Bhatt 2011, “Toward accessing spatial structure from building information models”.
13Hillier and Hanson 1989, The social logic of space.
14J. H. Lee, Ostwald, and H. Lee 2017, “Measuring the spatial and social characteristics of the archi-

tectural plans of aged care facilities”.
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(a) Visibility Between Nodes (b) Visibility with Obstacles

Figure 2.12: Visibility Graphs

(a) Network (b) Clustering

Figure 2.13: Graph Clustering

complex projects and environments and understand their interrelationships as well as
the distinctions between them in order to make specific design decisions in a meaningful
way. This method unfolds its full potential when dealing with complex buildings or urban
structures.

Multiscale Graph Analysis This method allows the analysis of a system represented
by points and edges at multiple levels or scales. By being able to analyse at multiple scales,
significant insights can be obtained about the interactions between individual elements
of different layers, allowing for the design of more effective and, above all, more integra-
tive design concepts. A meticulous elaboration of the graph structure to be analysed is
necessary to successfully represent this interaction between the individual subsystems.

Congestion Analysis Congestion analysis methods originate from urban applications,
where the risk of congestion (figure 2.14) is calculated as a function of the geometric

21



Figure 2.14: Congestion of Floor Plan

properties of the infrastructure network. However, this method of analysis has also found
useful applications in building architecture, where the set of possible paths from one
point to an opposite point is computed. Values are thus calculated for the entirety of the
plan being analysed, which can provide information about the overlap of these paths and
describe the risk of congestion within the building at all points. This method therefore
represents an essential tool that can lead to the optimisation of circulation within a
building through morphological changes.

Centrality Analysis Using graph-based representations of complex systems and geo-
metric or topological structures, the centrality of individual elements within the system
can be inferred. By comparing and summing the number of edges of each node, conclu-
sions about the degree of centrality can be drawn. In addition, examining properties that
influence centrality, such as the node degree along certain paths, provides insight into the
hierarchy and structure of the system. A practical application of this method of analysis
is to observe the axial map of a building complex to verify whether particular rooms meet
or exceed the desired level of centrality. There are two main types of centrality measures:
closeness (figure 2.16) and betweeness (figure 2.15). While the former quantifies how close
each node is to all other nodes in the network, the latter measures the degree to which a
node is located on the shortest paths between pairs of other nodes in the graph structure.

Frequent Pattern Analysis Another method of graph analysis more commonly used
in urbanism is called frequent pattern mining, which uses specific algorithms to identify
repeating patterns within the graph network, and can be used to examine certain urban
constellations for possible problems or even advantages. In architectural applications, this
method can also be used to classify complex building structures, for example to identify
all the vertical staircases in a building complex or to categorise the individual corridors.
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(a) Villa Savoye (b) La Rotonda

Figure 2.15: Betweeness Centrality

(a) Villa Savoye (b) La Rotonda

Figure 2.16: Closeness Centrality
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(a) Circle (b) Star

Figure 2.17: Graph Morphologies

Connectivity Analysis The most important information conveyed by graphs is the
connectivity of the nodes. In fact, the existence of an edge between individual elements in
a network effectively indicates a relationship between them. It is therefore not surprising
that a common method of graph analysis in both urbanism and architecture is connectivity
analysis15. This method involves taking individual elements of the system as starting
points, trying to analyse their connection to other elements, and ultimately understanding
the full interconnectedness of objects and making design proposals accordingly.

Community Detection Similar to graph clustering, community detection is used to
identify groups of elements in a system that share similar properties or characteristics.
However, this method looks at both the information carried by each node and the edge
properties of each link to identify individual groups. In this respect, this method can
be used by the designer to understand existing systems, such as ecological systems, or to
visualise the grouping of building elements in a designed building based on their attributes
and connections to each other.

Morphological Analysis In the example of morphological analysis of graph networks,
the general formal aspects (figure 2.17) of the network are considered. Depending on the
level of abstraction of the represented data, information about the morphology of the
structure can be obtained. In an architectural application, for example, this allows the
identification of the ground relationship16 of a particular building or other formal aspects
such as strong elongations or circular structures on a geometric-formal level.

Random Walks A graph entity can be tested for possible design related issues by ap-
plying the random walk method, which consists of starting iteratively or in parallel at
randomly chosen nodes of the network and walking along an equally randomly chosen
path. This initially purely stochastic method makes it possible to reveal paths of move-
ment that might have remained unknown to the designer without the use of this method.

15Dawes, Ostwald, and J. H. Lee 2021, “Examining control, centrality and flexibility in Palladio’s villa
plans using space syntax measurements”.

16Alymani, Mujica, et al. 2023, “Classifying building and ground relationships using unsupervised
graph-level representation learning”.
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(a) Base Graph (b) Minimum Spanning Tree

Figure 2.18: MST Computation

A concrete application could be an automatic analysis of the architectural usability of the
designed object, which can reveal unwanted dead ends or missing connections between
rooms.

Minimum Spanning Trees An elementary method of mathematical graph theory
is to create a subgraph of the original graph such that it connects all vertices. The
particularity of this subgraph, however, is that each pair of nodes of this graph is connected
by only a single edge, thus representing the mathematical concept of a tree. The formation
of this spanning tree is fundamental to a number of graph analysis methods, including
the computation of a Minimum spanning tree, which describes the spanning tree of a
graph that has the lowest total edge weight (figure 2.18). For unweighted graphs, this is
equivalent to the lowest number of edges. It becomes apparent from this definition that
the application of such minimal spanning trees in a complex building can provide essential
information about the shortest overall connection of all represented elements on a two- or
even three-dimensional level.

Network Flow Analysis Originating in engineering and computer science, network
flow analysis can provide important information about the performance of a defined ori-
ented system where a particular capacity or resource is to be optimised. It involves the
construction of a directed graph with a starting point and one or more end points. The
individual edges and nodes can receive information about a maximum allowable quan-
tity of the flowing medium, representing the individual constraining instances of the flow
network. This method is most commonly used to test the performance and capacity of
systems such as plumbing, power grids, sewer systems or even ventilation systems. How-
ever, the flowing medium can also consist of crowds and can therefore be used to test the
capacity of architectural designs, particularly in public buildings such as concert halls,
conference centers or hospitals, to accommodate a certain number of visitors.

Node Degree Analysis A relatively intuitive method of graph analysis is to look at
the node degree of each node (figure 2.19). This can provide information about the degree
of integration of the particular element under consideration into the system at hand, and
thus provide conceptual support in the pursuit of a well-connected architectural object.
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(a) Villa Savoye (b) La Rotonda

Figure 2.19: Node Degree

Geometric Graph Theory The methodology of geometric graph theory is concerned
with the analysis of spatial networks which, unlike non-euclidean graphs, describe a geo-
metric representation of objects represented in graph form. Thus, edges in these geometric
graphs describe exact metric distances between individual vertices, and the individual ver-
tices refer to exact two- or three-dimensional cartesian coordinates. In an architectural
application, this allows a purely geometric view of the represented system, as opposed to
the analysis of topological or abstract programmatic information. This enables the de-
signer to calculate the total distance in metric values between two nodes or, for example,
the exact length of the longest paths from certain rooms in a building complex to the
nearest emergency exit.

Shortest Paths Analysis The shortest path problem (figure 2.20) in graph theory
describes the search for the shortest connection between any two arbitrarily chosen vertices
of a graph. In other words, it is about finding the shortest sequence of different vertices
connected by edges, starting with an arbitrary node of the graph and ending with another
arbitrary node. There are several different algorithms for finding this shortest path with
different computational speeds. As a method of analysis in architecture, the search for
the shortest path is an essential concept to topologically analyse the architectural object
and to identify widely separated spaces or to strategically position important elements
such as emergency exits or lifts.

2.1.2.3 Graph Machine Learning

In the field of architecture, the application of machine learning has rapidly gained impor-
tance in the recent years17. These computer science methods make it possible to analyse
large amounts of data and use established algorithms to identify patterns or make pre-
dictions that are relevant to the design and planning of architectural objects. Machine
learning can thus help to optimise architectural projects and improve the performance of
these objects in a variety of ways, for example by analysing the behaviour of spatialities

17Belém, Luis Santos, and Leitão 2019, “On the Impact of Machine Learning: Architecture without
Architects”.
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(a) Shortest Path I (b) Shortest Path II

Figure 2.20: Shortest Path Analysis

and materials under different conditions. For instance, machine learning can be used
to optimise certain parameters or dimensions that improve a building’s energy require-
ments or load-bearing capacity. Similarly, data science methods can be of great benefit
to architects in analysing user behaviour and designing spaces. However, there are also
some challenges in applying machine learning to architecture18, such as the need for high
quality, evaluated and maintained datasets, and the sometimes high complexity of the
algorithms.

In principle, there are two main types of machine learning tasks, called classification and
regression. Classification involves dividing data into predefined classes or categories, while
regression involves making continuous predictions based on numerical values. For exam-
ple, categorising building elements into windows, doors and walls would be a classification
task, while predicting the number of people in an office building at a given time would
be a regression problem. In addition, there are different types of training procedures in
data science, which come with their own set of benefits and challenges. The two main
methods, supervised and unsupervised learning, are basic categories of machine learning
that differ in the type of data provided. In supervised learning, algorithms are trained
on labelled data, where the desired value or class is known in advance. In unsupervised
learning, the models are trained on unlabelled data where no clear answers are given.
There is also semi-supervised learning, a hybrid of supervised and unsupervised learning,
where both labelled and unlabelled data are used for training.

Graph-based machine learning is the term used to describe the relatively new branch of
data science that relies on datasets in graphical form and therefore involves a number
of special procedures. Training machine learning on graph data, as opposed to the more
common tabular data, has the significant advantage that the trained models receive cor-
relations and relationships as input data, making it possible to identify graph-specific
qualities or problem sets. In the context of graph-based machine learning, both classifi-
cation and regression tasks can arise. For example, the task may be to classify nodes in a
graph based on certain features, or to make predictions about the weights of certain edges
in a weighted graph. Similarly, the training methods can vary, so that both supervised

18Pena et al. 2021, “Artificial intelligence applied to conceptual design. A review of its use in archi-
tecture”.
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Figure 2.21: Graph Neural Network Scheme

and unsupervised learning can be applied in the graph context. For example, the goal
can be to learn the classification of nodes in a graph by training on labelled data, or the
objective may be to discover hidden patterns or commonalities in the graph by clustering
or dimension reduction without the need for labelled data. Accordingly, the hybrid of
the two training variants, semi-supervised learning, can be used to deal with a limited
amount of labelled graph data as well as a large number of unlabelled graphs.

The discipline of graph-based machine learning in data science has seen a considerable
amount of new research19 in recent years and is in constant flux. Nevertheless, four main
groups of neural network methods have emerged as useful deep learning approaches.

Graph Neural Networks A broad family of machine learning models that focus on
graph data processing are Graph Neural Networks (GNNs). By propagating information
within the graph and aggregating features from neighbouring nodes, they produce more
meaningful representations of each vertex. Through this iterative process, GNNs can
perform tasks such as node classification, link prediction, and graph-level prediction. GNNs
have proven to be extremely powerful in a number of domains, including architecture, for a
variety of tasks. There are several variants of GNNs, each with its own specific techniques
and applications. The principal groups are presented below.

Graph Convolutional Networks GNNs architectures called Graph Convolutional
Networks (GCNs) have been developed specifically for processing data represented in
graph structures. They perform convolutions on the graph by aggregating local informa-
tion from adjacent nodes to create new representations or features that capture both the
local structure and the properties of the nodes (figure 2.21). The convolution process
uses both the features of the nodes and the topology of the graph to capture complex
patterns and relationships. These networks can be used for tasks such as graph clustering,
node and edge classification or edge prediction. By harnessing the topological information

19Velikovi 2023, “Everything is Connected: Graph Neural Networks”.
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within graph structures, GCNs can outperform conventional GNNs.

Graph Attention Networks A special type of GNNs called Graph Attention Networks
(GATs) introduces an attention mechanism to evaluate the relative importance of neigh-
bouring nodes in aggregating information, such as evaluating the influence of different
architectural components within a building design. By using attention, GATs can assign
different weights to different nodes in the graph, focusing on the most relevant nodes in a
given context. This selective attention not only improves the efficiency of the model, but
also allows it to capture more fine-grained, contextual relationships within the graph.

Graph Autoencoder Unsupervised learning models called Graph Autoencoder (GAEs)
encode graph data, such as architectural layouts, into a compact latent representation
that can be subsequently decoded into the original graph structure. GAEs consist of
two primary Graph Neural Networks: an encoder, which transforms the input graph
into a low-dimensional representation, and a decoder, which reconstructs the graph from
the compressed representation. This latent representation can be used for tasks such as
dimension reduction or graph generation. GAEs are able to efficiently learn expressive
representations and provide insights into the underlying patterns and relationships within
the data.

Graph Recurrent Neural Networks Graph Recurrent Neural Networks (GRNNs)
are another class of GNNs that incorporate Recurrent Neural Networks (RNNs) compo-
nents to model dynamic, sequential data on graphs, such as evolving architectural designs
or construction processes. GRNNs are particularly useful for problems where the graph
structure or node attributes change over time, such as in temporal networks or dynamic
structures. By combining the expressiveness of GNNs with the sequential modelling ca-
pabilities of RNNs, GRNNs can capture both spatial and temporal dependencies within
the data, enabling accurate prediction and in-depth analysis of temporally evolving graph
structures.

2.2 Topology
Architectural thinking is usually closely linked to the understanding and analysis of ge-
ometric methods, since dimensions, surfaces and angles constitute an elementary part of
the discipline. However, if we consider only the space generated by surfaces and bound-
aries, the metric components can be disregarded for the time being. In fact, the space
defined by the domain of a sphere has the same properties, regardless of size or distortion
transformations, as long as we do not consider the interior as a metric unit of volume.

This becomes interesting as soon as we compare the interior of a sphere with the interior
of a cube. In both cases it is a space enclosed by a continuous surface without openings
to the surrounding environment. To illustrate this theoretical understanding of space, the
example of a doughnut and a coffee cup is often used, since although the two shapes have
little in common at first sight, they are indistinguishable on a purely spatial-formal level.
In fact, a coffee cup can be transformed into a doughnut by certain matrix transformations
without breaking or joining the faces that make up the object. This approach is called
topology because it deals with the study, logos, of spaces, topos. In other words, topology
is the branch of mathematics that deals with the analysis of solids undergoing continuous
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Figure 2.22: Topological Deformations of a Cube

deformation without being opened, closed, torn, joined or self-overlapping20 (figure 2.22).

Topology is based on a formal definition of the space concept, in which space is a set of
points associated with certain properties and relations. The basic concept is to consider
open and closed sets of points in space, where the dimensionality of the space can be
unbounded. An open set is a set in which each point has a certain radius around it in which
there are no other points. A closed set is a set that contains all its boundary values, which
are the boundaries between the set and the outside world. Based on these basic concepts,
other terminologies such as continuous functions, homotopy and cohomology have been
developed. A continuous function is a mapping between two spaces that preserves the
structure of the space. A homotopy is a continuous transformation between two functions
that change the space in an equivalent way. Cohomology, on the other hand, deals with
the study of geometric objects by analysing their characteristic classes.

Topological studies are divided into three main areas21: algebraic topology, differential
topology and geometric topology. Algebraic topology studies space by means of algebraic
methods and focuses on the analysis of homotopy groups, cohomology groups and other
algebraic instances. Differential topology, on the other hand, studies space by analysing
its smooth functions and differentiable structures. Geometric topology studies space using
geometric methods and investigates questions of shape and structure, such as the study
of manifolds and the curvature of spaces.

Through the concept of topology, new tools for architectural consideration of spatial
structuring become apparent and their formal application via transformation and analysis
in the design process demonstrates their usefulness.

2.2.1 Topological Analysis
Topological methods of analysis are integral to the discipline of architecture, although
they are often not clearly recognisable as such to the observer or even the designer. In
fact, architecture can in a sense be considered part of the topological discipline, since
architecture, according to certain definitions, is about the elaborate division and enclo-
sure of the three-dimensional space that surrounds us, which is achieved by connecting
and assembling various constructive components. In this respect, topological methods of
analysis in architecture offer a range of possibilities for investigating the properties and
relationships between different elements in an architectural system. This involves the
analysis of spatial or elemental structures that cannot be reduced to geometric properties

20Kantor 2005, “A tale of bridges: topology and architecture”.
21Kelley 1955, General topology.
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Figure 2.23: Topologic Components

such as length, width or height, but rather the topology of space, in other words how the
elements are connected to each other or how the respective forms are constructed. In par-
ticular, the spatial language tool Topologic22 and its Python API TopologicPy, as well as
its analytical capabilities, are considered here as a concrete demonstration of topological
methods on architectural objects and elements. The software tool allows n-dimensional
bodies to be decomposed into their constituent parts and higher-dimensional structures
to be created from n-dimensional basic parts, thus enabling a topological understanding
of the formation of boundaries and space.

The hierarchical-categorical structure of elements into topological categories (figure 2.23)
such as vertex, edge, wire, face, shell, cell, cellcomplex and cluster allows formal transfor-
mations without changing the basic topology of the geometric bodies or even performing
specific topological deformations. The functionality is based on the decomposition of
shapes into non-manifolds, so that, for example, a cell body is composed of three or more
contiguous closed faces, which become a two-dimensional shell object once this shape is
opened through a whole in the boundary of the body.

Using this setup, three main topological relationships can be queried23 in an object-specific
manner. The hierarchical relationship (figure 2.24a) of topological elements refers to the
composition of objects by their subelements. For example, the edge of a cell object is a
subtopology of that same cell object and is referenced as such in the data structure. This
also works the other way round: if three vertex elements are connected by edges, their
supertopology is a wire object.

Another type of relationship, which can be easily queried thanks to the structure of the
Topologic library, is the lateral relationship between individual elements (figure 2.24b).

22Aish et al. 2018, “Topologic: tools to explore architectural topology”.
23Jabi, Aish, et al. 2018, “Topologic: A toolkit for spatial and topological modelling”.
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Figure 2.24: Relation Query Methods

(a) Base Configuration (b) Cut (c) Union (d) Intersection

Figure 2.25: Boolean Operations

Here, the relation of two n-dimensional elements to each other is queried by looking at
the subtopologies they share. For example, a three-dimensional apartment model with
rooms and corridors as cellcomplex objects can be seen as a collection of spaces, each of
which shares at least four edges and correspondingly at least four vertices at the one-
dimensional level.

The third relational property is the connectivity of the individual elements (figure 2.24c),
which can be queried through defined methods by describing the topological connection of
element A to element B. The connection between the two elements is described in terms
of the topological connection between the two elements and can pass along edges, through
faces or volumes depending on the defined dimensionality. The connection created in this
way can be represented by a graph structure, thus allowing the application of graphical
analysis methods.

Another fundamental feature of the software described is the implementation of Boolean
operations that can be applied to any n-dimensional pairs of elements, thus creating new
topologies. The main Boolean operations are Union (figure 2.25c), Difference (figure
2.25b), Intersection (figure 2.25d), Symmetric Difference, Merge, Slice, Impose and Im-
print, where the resulting objects are always non-manifold.

The main advantage of using non-manifold geometries is that elements can contain subele-
ments that do not necessarily form a closed body. Thus it is possible for a face to contain
an aperture which could represent a window or a door, so that the face becomes the domain
of the aperture and can accordingly be examined by the topological methods mentioned.
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Figure 2.26: Isovist Analysis of Villa Savoye

2.2.2 Space Syntax
When first introduced24, the study of space syntax was seen as a parallel current to the
formal preoccupations of the architectural profession because, as a theory, it is primarily
concerned with understanding spatial relationships and their social effects on people. It
thus serves to metrically analyse the social performance of architectural objects25 and is
primarily concerned with the socio-spatial organisation of buildings. Particular attention
is paid to the local status of spatiality and its organisational position between private and
public space. However, the theory of spatial syntax is by no means limited to buildings,
as it can develop its full potential in larger networks such as urban structures. Therefore,
this theory is concerned with studying the interaction and behaviour of social and spatial
structures in order to achieve the best possible combination and interaction26. As a
discipline, it combines topological, geometric and social information to test specific spatial
configurations through analysis and simulation to evaluate their performance before they
are built. Three principal methods of analysis exist in spatial syntax theory, which can
describe the relationships and interactions of spatialities at the urban or building scale
through cartographic and graphical representation.

Isovist Analysis An isovist analysis (figure 2.26) describes a method that allows the
visualisation of all elements of a spatial body that are visible from a given point in space.
The creation of an isovist graph is based on the tracing of lines of sight and fields of vision,
and makes it possible to understand and optimise the effect of light, space and materials
on the perception of spaces.

24Hillier and Hanson 1989, The social logic of space.
25Nourian, Rezvani, and Sariyildiz 2013, “Designing with Space Syntax: A configurative approach to

architectural layout, proposing a computational methodology”.
26Franz, Mallot, and Wiener 2005, “Graph-based models of space in architecture and cognitive science:

A comparative analysis”.
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Figure 2.27: Axial Analysis of Street Network

Axial Analysis The creation of axial maps (figure 2.28) is another fundamental tool
from the field of spatial syntax analysis and consists in representing spatial structures
on an architectural or urban level through a network structure, thus making spatial con-
nections clear. It forms the basis for graph-theoretic analysis methods that build on its
framework, but certain conclusions can already be drawn without deeper analysis. For
example, the spatial organisation of a building can be better understood and communi-
cated by looking at the connections between rooms of an architectural object and the
course of the generated axes.

Convex Space The convex space method (figure 2.29) considers architectural space
as a collection of convex surfaces or volumes separated by walls or other solid elements.
The individual convex bodies describe the number of respective point pairs that can be
connected by an edge without intersecting or leaving the boundaries of the convex body.
The analysis of convex space is therefore based on looking at the space created by the
individual shapes and observing how these areas are connected. This method of analysis
provides essential spatial information, as by placing an individual in such a convex space,
the totality of the environment can be accessed by the observer, which strongly influences
the cognitive perception of such spaces.

With the increased adaptation27 of space syntax in architecture and urbanism, other
concepts have emerged that allow for more concrete spatial analyses, a more accurate
understanding of social structures and their interaction with the environment, and acces-
sibility analyses of designed elements.

Depth Analysis Depth analysis (figure 2.30) in the context of spatial syntax theory is
concerned with the topological depth of urban structures or architectural objects. The

27Y. Li et al. 2009, Design with space syntax analysis based on building information model.
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Figure 2.28: Axial Graph of the Kreuzberg District
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(a) Villa Savoye (b) Convex Space (c) Convex Connection

Figure 2.29: Convex Space Analysis

(a) La Rotonda (b) Villa Savoye

Figure 2.30: Depth Map Analysis

depth is described by the number of elements that must be traversed to reach a given
point in the described system. In this framework, it is therefore a topological distance
as opposed to a geometric one. The method is usually applied to topological graphs, but
can also be used to create a general depth map of the body to be described, in which case
it can also be used for geometric depth evaluations.

Space Integration Based on the creation of an axial map, the accessibility of certain
paths or elements (figure 2.27a) can be detected, calculated and visualised by applying the
concept of space integration. This method consists in calculating the degree of accessibility
at each element of an axial graph by considering how many elements must be crossed to
reach the analysed entity. Again, different units of distance can be considered, such
as topological distance, metric distance (figure 2.27b), or even angular distance, which
considers how many rotations an individual goes through to get from any point to the
point or element being investigated.
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Patterns The discussion of the role of recurring patterns in architecture, introduced
by Christopher Alexander28, has attracted considerable attention in architectural theory
and has occurred concurrently with the development of spatial syntax theory. In this
respect, it is hardly surprising that his description and meticulous definition of certain
patterns, which follow clear and predictable rules, have also found their way into space
syntax methods. In this context, these patterns can refer to the spatial structure, the
social organisation or the functions of an environment. In particular, the so-called social
patterns are considered, which refer to the patterns resulting from the social interaction
and behaviour of people in certain spatial contexts. Each social pattern comes with its
own characteristics and needs and, once identified, can help the designer to shape the
space accordingly.

2.2.3 Shape Grammar
The so-called shape grammar (figure 2.31) is a formal methodology for the automated
generation of architectural bodies in mainly two- and three-dimensional spaces, and has
gained importance in architectural theory since the 1970s29. The basic operation of the
method is based on the assumption that certain elements can be combined through estab-
lished rules to generate various architectural objects and their derivatives (figure 2.31c).
The theory thus assumes that the formal aspects of architecture follow certain regularities
which are defined by a finite number of rules and thus become part of a formal design lan-
guage. By applying this grammatical syntax to specific architectural forms, a multitude
of different variants of a morphologically similar aggregate of bodies can be generated, all
following the same generative rules, as long as these rules allow for a certain degree of
variation.

As the terminology of the two concepts, shape grammar and space syntax, suggests, their
combination is complementary at a theoretical level and, when skilfully applied, allows a
qualitative architecture to emerge. The architectural rules needed to make the algorithm
work can be quite diverse, but should always start with an initial geometric ground rule
(figure 2.31a) and be terminated by a final rule. Typically, the initial rule is the definition
of a simple geometric shape, and subsequent rules (figure 2.31b) are either transformation
rules or parametric rules. Examples of transformation rules are rotation of certain added
or initial bodies, translations, reflections, scaling or Boolean transformations. Parametric
rules allow a greater relationship to the geometric context of the transformations, as
parameters can be defined and varied depending on other subfigures or constellations.

2.2.4 Space Partitioning
For nearly a century, a subfield of architecture and design theory has been concerned
with the research and development of algorithms that enable the generation of a two- or
three-dimensional spatial layout by partitioning or accumulation that follows desired reg-
ularities. This area of research is often referred to as automated floor plan generation30.
The shape grammar language mentioned above is part of this search for algorithm-based
spatial partitioning. In the context of this work, a close look at each of the established
and less common methods, as well as their combination, is essential, since a basic geo-

28Alexander 1977, A pattern language: towns, buildings, construction.
29Hong and Economou 2022, “Five criteria for shape grammar interpreters”.
30Nisztuk and P. B. Myszkowski 2019, “Hybrid evolutionary algorithm applied to automated floor

plan generation”.
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Figure 2.31: Shape Grammar Process

metric space partitioning is elementary for the generation of an architecturally qualitative
dataset, as demonstrated in the chapter 4.

The initial conditions, the input, for the correct functioning of the various methods can be
very different and are therefore an elementary part of the consideration, evaluation and
comparison of the presented algorithms. The rule-based structure of the shape grammar
differs significantly from the simpler geometric algorithms, which require as a starting
point a defined two- to three-dimensional body, percentages of space or even a random
seed. In addition, there are a number of methods that start with certain geometric bodies
with given dimensions and then proceed to combine them in various ways to form an
agglomerate.

Grid Planning A relatively simple way to partition a desired space under certain
conditions is the grid-based planning method (Grid Planning). In this method, the initial
surface or body to be partitioned is covered with a uniform or varying grid (figure 2.32b)
that is more or less closely meshed with respect to the total area and the desired number of
partitions. This method further requires information on the programmatic and topological
relationships of the individual units in order to make compositional decisions and compare
different arrangements.

In the case of automatic floor planning, the individual rooms to be arranged are assigned
different values for their connections to each other, similar to a weighted graph, introduced
in figure 2.32a. In order to place the individual spaces in the defined grid in the best
possible way, the desired connection between them is respected as much as possible, be it
Boolean values in the case of topological relationships or local distance values. This defines
the basic framework of the grid-based planning method31, to which different algorithms
for optimised space placement can now be applied.

First, spaces can be placed through an iterative process starting with a randomly selected
or predetermined space (figure 2.32c). In the following steps, the rooms are gradually
placed according to their relationship priority. This continues until finally all rooms have
been placed (figure 2.32d). Although this method has a higher probability of finding an
optimal space allocation than a random placement method, there is a risk that certain
decisions during the process may prevent an optimal solution from being found.

31Lopes et al. 2010, “A constrained growth method for procedural floor plan generation”.
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Figure 2.32: Grid Planning

The random swap algorithm32 has proven to be a better alternative to the iterative as-
signment method. Starting from a random placement of all rooms, this algorithm swaps
two room positions in iterative steps and checks whether the general fitness function,
which is the sum of all distances, is minimised. This method represents a greedy algo-
rithm33 because it only evaluates per iteration whether the action just performed optimises
the overall result, but without having a general overview over several iterations. Using
the random swap algorithm, optimised results can be obtained compared to the itera-
tive assignment method. However, the latter is significantly more time-consuming and
computationally expensive.

Subdivision While the grid-based planning method locks the final layout to the posi-
tion and dimensions of the defined grid, a subdivision method can be used to iteratively
structure a space by freely placing walls within a defined boundary, similar to the manual
architecture method. This family of partitioning methods consists mainly of relatively
simple algorithms that differ only in the way the walls are placed. However, they all have
as a basic requirement the definition of an initial shape which, in this concrete context,
represents the outline of the floor plan to be subdivided.

The first and most intuitive method is to divide the basic body (figure 2.33a) in an
arbitrary or defined direction, creating two partial surfaces (figure 2.33b). This process is
repeated until the desired number of faces is obtained (figure 2.33c). The basic concept of
recursive subdivision is a binary tree which has a starting point, the base body, and two
child leaves representing the two resulting faces. This is a fast and effective algorithm,
taking only linearly more time as the number of spaces increases. However, this method
of space division is very limited as it does not take into account any definition of room,
size or percentage.

A slightly modified form of this recursive subdivision are the so-called k-dimensional tree
algorithms34 (K-D tree algorithms), which subdivide the space by iteratively placing walls
in a similar way to the previous algorithm. However, the placement of the intersections
is not arbitrary. First, points are placed on or in the two- or three-dimensional body
representing the position of each room. These sets of points are then bisected by a wall
along their larger extension in the middle, so that the same number of points are in both
subspaces. This is repeated iteratively until there is only a single point in each subdivided
space. The direction of the wall placed per iteration is variable and is determined by the

32Nagy 2021, “AI in space planning”.
33Nisztuk and P. B. Myszkowski 2019, “Hybrid evolutionary algorithm applied to automated floor

plan generation”.
34Knecht and König 2010, “Generating floor plan layouts with kd trees and evolutionary algorithms”.
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Figure 2.33: Recursive Subdivision of a Rectangle

geometric depth of the set of points. Due to its logic, this algorithm is only minimally
slower than the previous one, requires only negligibly more computing power, and is
more suitable for automated floor planning than the recursive subdivision method due
to the possibility of controlling room sizes and placement through the position of the
aforementioned points. Examples of the k-d tree method are given in the section 4.1.1.1.

Another method, also based on the binary tree construction, is the squarified treemap
algorithm35, which has the significant advantage of being able to define the percentages of
the room sizes in advance. However, unlike the recursive subdivision and k-dimensional
tree algorithms, this method is only suitable for rectangular initial shapes. Further ex-
planations can be found in the section 4.1.1.1.

Methods that are not based on a binary tree structure include so-called Voronoi dia-
grams36. Similar to the k-dimensional tree algorithms, points are projected onto the
surfaces to be subdivided, representing the position of each space. By creating a Delau-
nay triangulation of these points and then dividing the centers of the edges of the mesh
by orthogonal lines, Voronoi cells can be constructed around the origin points. These
denote the region that is geometrically closer to the Voronoi seed than to any other point
on the shape. This method of subdivision has the significant advantage that the initial
body can be of any shape, thus providing great variability in layout generation. This
method is described in detail in section 4.1.1.1. However, a disadvantage of conventional
Voronoi diagrams is the lack of control over the area of each Voronoi cell. To overcome
this drawback, weighted Voronoi diagrams, also called Laguerre Voronoi diagrams37, can
be adopted. They allow a weight to be assigned to each Voronoi cell, thus influencing the
size of the area of each cell in relation to the other cells.

35Marson and Musse 2010, “Automatic real-time generation of floor plans based on squarified treemaps
algorithm”.

36Coates et al. 2005, “Generating architectural spatial configurations. Two approaches using Voronoi
tessellations and particle systems”.

37Anuradha, Sabnis, and Thirumavalavn 2008, “Voronoi diagram voro: Application of interactive
weighted Voronoi diagrams as an alternate master-planning framework for business parks.”
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Figure 2.34: Aggregation Process

Aggregation A striking characteristic of both the grid-planning and the subdivision
methods is that both require a predetermined initial shape. This is advantageous for
certain automatic floor planning tasks, but it can also be limiting as it restricts design
variation. The family of aggregation methods overcome this limitation by being struc-
tured in such a way that only the shapes of the individual rooms need to be defined in
advance (figure 2.34a). As the name suggests, aggregation methods38 attempt to cre-
ate an agglomerate (figure 2.34c) of the predefined room shapes by applying different
agglomeration functions.

To achieve the best possible result, evaluation formulas and conditions have to be created,
which can be optimised by shifting the individual spaces (figure 2.34b) using various
algorithms. For example, a fitness function can be created that tries to minimise the
distance between the individual areas without overlapping them. This can be done by
specifying different strengths of relationships between the rooms, if appropriate. This
fitness function can then be used as a constraint for an evolutionary algorithm, which,
similar to the biological concept, creates populations that influence different parameters
and go through natural selection processes, mutations and crossovers per iteration to find
the best possible position of each room, represented by the highest degree of optimisation
of the fitness function.

Similar to the evolutionary algorithm, simulated annealing can also be used as an optimi-
sation strategy, as it can likewise find an optimal arrangement by iteratively evaluating
the initially randomly selected solution of the parameters of the function to be optimised.
This process, like the evolutionary approach, does not guarantee that the optimal spatial
arrangement will be found. However, both methods have a higher probability of finding
the global maximum of the functions to be optimised.

Another method that allows for some autonomy in the room arrangement is the use of
agent-based optimisation39. Here, the individual rooms are initialised as agents acting
independently of each other, so that each individual room evaluates its own position and
orientation in relation to its environment. This evaluation takes place iteratively and
in parallel until the desired final condition is reached. More information on agent-based
optimisation can be found in the section 4.1.1.3.

Despite their advantages, the methods mentioned so far all have the common drawback

38As and Basu 2021, The Routledge companion to artificial intelligence in architecture.
39Guo and B. Li 2017, “Evolutionary approach for spatial architecture layout design enhanced by an

agent-based topology finding system”.

41



of being time-consuming and particularly computationally intensive due to their iterative
computation structure. Another possibility for aggregation is the creation of a physical
attraction model by spring force, where the rooms are connected to each other in a
predetermined way by physical forces and thus a desired space aggregation is generated
at the end of the simulation, as long as they were determined to be fixed, impenetrable
rooms. However, the main disadvantage of this method remains the high requirement of
computing power and that there is no guarantee that the final result will be free of gaps.
It must therefore be complemented by a displacement algorithm that tries to minimise
the gaps in subsequent steps.

Last but not least, methods from the family of shape-packing algorithms can also be used
in the aggregation strategy. Here, the individual rooms are shifted from a randomly chosen
initial arrangement in such a way that the area they occupy is minimised. However, even
in this case, gapless layout generation is far from being guaranteed.

2.3 Simulation
During the design process of any architectural concept, the attentive designer is concerned
with the interaction between inanimate matter and its environment. In order to evaluate
this interaction in a sound and correct way, a number of different methods have been
developed that allow the final or preliminary design to be tested in real scenarios in order
to evaluate its performance. This discipline is summarised under the concept of building
simulation in architectural design.

In terms of this definition, the best known simulation technique, which is inevitably
familiar to any designer or observer, is the representation of architectural projects in
perspective space. Here, the abstract constructive element adapts to the perspective per-
ception conditioned by the human eye, thus attempting to represent a simulation of the
physical situation. However, when talking about simulations in the architectural context,
one usually refers to more complex methods that imply either physical simulations, nu-
merical simulations, virtual, real-time or even agent-based simulations. In the context
of this thesis, the focus lies on physical and agent-based simulations, where the results
can be either stochastic or deterministic. A variety of various simulation techniques with
different variables can be carried out to provide detailed insights into the respective envi-
ronmental behaviour. A list and description of available open source simulation software
can be found in section A.3.2.

Light Simulations This simulation method is primarily concerned with simulating the
photons of natural light emitted by the sun, which manifest their interaction with our
physical world as solar radiation and can be measured in lux (figure 2.35). A variety of
different values and measurements can be calculated, such as the Daylight Factor (DF),
the Useful Daylight Illuminance (UDI), the Daylight Autonomy (DA) or even the Glare
Factor (GF). In this way, the positioning and dimensioning of windows and the choice
of solar shading systems can be optimised40. However, light simulations also allow the
simulation of illumination and its interaction with matter from artificial light sources.
In addition, the absence of light or the shadow cast by a particular building shape at a
particular time and day of the year can be simulated in a similar way (figure 2.36).

40Aksin and Selçuk 2021, “Use of Simulation Techniques and Optimization Tools for Daylight, Energy
and Thermal Performance: The case of office module (s) in different climates”.
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Figure 2.35: Light Simulation Villa Savoye in lux

(a) 1 May 13h30 (b) 1 November 13h30

Figure 2.36: Shadow Simulation
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Figure 2.37: Wind Simulation

Acoustic Simulations This method of physically simulating the acoustic properties of
defined spaces involves calculating the interaction of sound waves with the media in which
they propagate. Either a sender object is defined in advance whose emitted sound waves
are to be analysed, such as a professor in an auditorium, or artificial sender objects are
created to simulate sound transmission through certain materials, such as a neighbour’s
footsteps and their sound transmission through the floor to the apartment below.

Vibration and Earthquake Simulations Material properties in the presence of vi-
bration are not only of interest in the context of sound propagation, but can also provide
information about general physical properties of the overall structure. Vibration and
seismic simulations are an essential method of physical simulation for evaluating design
decisions, as resistance to different levels of vibration can be calculated by changing the
structure of the static frame or its material composition. For example, in geographical
regions where earthquakes occur regularly, this type of simulation can provide answers
to important questions about the stability and load-bearing capacity of the proposed
structure.

Fire Simulations The propagation of fires and the changes in essential material prop-
erties under extreme heat are difficult to calculate mathematically, because the interaction
of many different factors, such as the geometric structure of the building, the air density,
the material composition and the connection of individual elements and their spatial prox-
imity, significantly determine how the potential fire would affect the architectural object.
Fire simulations are therefore the most reliable way of analysing a building from a fire
safety point of view.

Rain and Wind Load Simulations As buildings are inevitably exposed to natural
forces, thorough calculations of the interactions between these forces and architectural
objects are required. Although rain and snow loads are often calculated using mathe-
matical equations rather than complex simulations, wind forces are difficult to calculate
in a simple mathematical way. For particularly high buildings, the horizontal wind load
can even be considered a limiting factor and must therefore be simulated and analysed
as accurately as possible according to the environment (figure 2.37). In almost all wind
and rain simulations, it is necessary to take into account and model the immediate urban
or natural environment, as certain wind corridors can form, which can cause unexpected
horizontal forces.

Airflow Simulations In order to provide a comfortable microclimate within a designed
building, or to prevent possible health risks due to reduced fresh air supply, general airflow
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simulations within the building need to be carried out. This involves simulating the
medium of air and its movement through each room of the building, calculating the rate
at which a certain percentage of existing air in a room is replaced by new incoming air, or
even which method of ventilating the whole building requires the least amount of energy.
Of course, the heating energy lost to incoming cold air also plays a role in the simulation,
but it is primarily an important aspect of energy performance simulations.

Load-Bearing Simulations Almost every architectural creation is subject to forces
based on Newton’s laws of physics, essentially influenced by the earth’s gravitational
pull. In this respect, architecture, as an engineering profession, is more closely related
to the constant consideration of the forces at work than any other activity. In this
context, it is not surprising that methods for simulating the load-bearing capacity of
individual materials, elements and even the entire structure are among the elementary
tools of architectural practice.

Building Condition Simulations This family of physical simulation methods has a
special place in simulation methodology because it is one of the few methods that takes a
largely four-dimensional approach. Building condition simulations look at how individual
materials change and possibly degrade over time to make predictions about the life cycle
of individual components or even the entire structure. Furthermore, due to its temporal
aspect, this simulation method can be integrated into the analysis of the material cycle,
which provides information on the possibility of recycling certain materials once they have
reached the end of their life.

This list of different physical simulations represents the principal methods for simulations
in everyday architecture and engineering, but can be complemented by a variety of other
simulations. Agent-based methods are less common simulation techniques, but can also
provide valuable information about the performance of designed architectural objects.

Building Occupancy Simulations A specific simulation that can have significant ap-
plication in architecture is the creation of agents that represent the occupants of a building
or the visitors to a public building. The individual agents are given defined behavioural
patterns and simulated using stochastic methods in an architectural context. The in-
teresting aspect of such agent-based methods is that the individual actors can exhibit
new, unexpected behaviours among themselves and in interaction with the architectural
framework, which can indicate design shortcomings or confirm or refute certain spatial
and programmatic design intentions.

Network Flow Simulations This method simulates the interaction of specific actors
in a network in order to observe different patterns of behaviour in their interaction within
the context of the given network topology. A widely used application in the urban context
is traffic flow simulation, where the behaviour of vehicles and other road users is observed
and analysed in the context of the given road infrastructure. In architectural applications,
it can be the graphical modelling of public buildings, where certain agents go about their
daily activities in and around the building, thus revealing possible bottlenecks in the
spatial configuration.

Safety and Evacuation Simulations Another important application of agent-based
simulations is to project the behaviour of crowds under specific circumstances. In this
context, safety and evacuation simulations assign general behaviours to individuals that
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correspond to emergency situations in the simulated scenario. As those type of situations
are influenced by a large number of different variables, the use of stochastic methods is
necessary. The results of such simulations can therefore provide important insights into
the optimal circulation within a building in evacuation situations.

Crowd Simulations The behaviour of large crowds differs in some respects from the
way individuals respond, as some patterns of human behaviour are only exhibited when a
certain number of people are present in and around the space. By defining the individuals
of a crowd as distinct agents, the difficult-to-predict behaviour due to the interaction of
the single agents can be represented and analysed. This provides formal and topological
information about the performance of the designed architecture in relation to its use of
space.

Typically, the aforementioned simulations are performed in advanced design phases of the
project, or even after the design process has been completed, since in most cases they
are elaborate processes which, in their conventional form, are not economically suitable
for integration into an iterative process. This implies that, in reality, any shortcomings
discovered during the simulation stages are often costly and difficult to correct in the
architectural design41.

2.3.1 Energy Performance
Energy simulation is a key tool in architecture for investigating and optimising the energy
efficiency of buildings (figure 2.38). With growing global energy challenges due to climate
change and limited resources, such simulations are becoming increasingly important and
are commonly referred to as Building Energy Modelling (BEM). They use complex math-
ematical models and algorithms to analyse the energy performance of buildings, taking
into account factors such as climate, geometry, material properties, use and energy trans-
fer. The data collected is converted into energy balances to predict the behaviour of the
building and identify weak points. By optimising the energy performance of buildings,
significant energy savings can be achieved, bringing financial benefits and helping to re-
duce energy consumption and CO2 emissions. This type of simulation allows architects
and designers to test different scenarios and optimise the energy performance of buildings
before they are actually built. In practice, they are increasingly being used to make build-
ings more sustainable and energy efficient, both for new buildings and for the renovation
or conversion of existing buildings.

Energy simulation in architecture can be performed in a variety of ways, including dy-
namic, thermal and structural simulations. Each type of simulation requires different
input data to obtain accurate results. Typically, data such as building geometry, ma-
terial properties, climate data and building occupancy data are required. The resulting
values vary according to the type of simulation. For example, dynamic simulations can
produce energy consumption projections for the building on a daily, weekly or annual
basis. Thermal simulations, on the other hand, can map the temperature distribution in
the building and the heat output from heating and air conditioning systems. Structural
simulations can calculate loads on structural elements and the load-bearing capacity of
materials. Despite the benefits of energy simulation, there are a number of drawbacks
and limitations.

41Ali 2023, “Architectural Pipeline: An experiment into the role of topological graphs in the early
stages of architectural design in the era of machine learning”.
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(a) Sensible Cooling (b) Sensible Heating

Figure 2.38: Energy Simulation

One of the biggest challenges is obtaining accurate input data42, as material properties
and actual building use are often unclear or difficult to obtain. In addition, simulations
can be time-consuming and require powerful computers, specialised software and trained
personnel to operate them43.

The results of energy simulations are usually presented in numerical form, such as charts,
graphs or tables and may have different units depending on the values simulated: for
example, energy consumption projections are usually measured in kilowatt-hours (kWh)
or even megajoules (MJ), while temperatures are expressed in degrees Celsius (◦C),
Fahrenheit (◦F ) or Kelvin (K).

2.3.2 Optimisation
Simulation-based optimisation is a relatively recent but growing area of architectural de-
sign tools44, as it allows practitioners to test and manually or automatically optimise
different design scenarios before they are realised. The aim of this simulation-based opti-
misation is to adjust and vary certain parameters, such as dimensions, materials, shapes,
rotations and general transformations, so that the simulated evaluation function achieves
its optimal performance45. An intuitive approach to optimisation through simulation in
architecture is manual parametric testing, which allows architects to evaluate the over-
all design through simulations by varying specified parameters. Iterative processes and
parameter adjustments are then used to achieve the best possible result.

The advantage of this optimisation strategy is that once the parametric model has been
defined, little expertise is required on the part of the designer to optimise it. However, this

42Hauck 2017, “Energy Model Machine (EMM)”.
43Chatzivasileiadi et al. 2018, “The effect of reducing geometry complexity on energy simulation re-

sults”.
44Sebestyen and Tyc 2020, “Machine Learning Methods in Energy Simulations for Architects and

Designers”.
45Aksin and Selçuk 2021, “Use of Simulation Techniques and Optimization Tools for Daylight, Energy

and Thermal Performance: The case of office module (s) in different climates”.
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Figure 2.39: Gradient Descent Optimisation

approach is extremely time and computation intensive and does not guarantee optimal
results due to its intuitive logic. As a result, over the years many automatic optimisation
algorithms and methods, most of which have their origins in mathematics or computer
science, have proved useful in architectural optimisation applications.

Deterministic Optimisation Methods Deterministic optimisation methods have be-
come an indispensable part of today’s scientific world. They are based on the application
of mathematical models to find an optimal solution to a given problem (figure 2.39). These
methods offer a variety of techniques, such as the gradient descent method, the Newton-
Raphson method, the conjugate gradient method or even the quasi-Newton method. The
gradient descent method is a well-known algorithm46 used in many optimisation applica-
tions. It is particularly effective in finding a solution that minimises the value of a given
function. It can converge quickly even in complex cases and is easy to implement. The
Newton-Raphson and Conjugate Gradient methods are useful for large and complex prob-
lems. They can find solutions accurately in a short amount of time, using local Hessian
matrix information. The Conjugate Gradient method is especially useful for symmetric
matrices, while the Newton-Raphson method is good for non-linear functions. The quasi-
Newton method is similarly an effective method for optimising non-linear functions, but
is based on the approximation of the Hessian matrix by a positive definite matrix. The
method is known for its fast convergence and ability to work well in practice.

Stochastic Optimisation Methods Stochastic optimisation methods provide an al-
ternative approach to solving optimisation problems, and are particularly useful for solving
complex tasks. Unlike deterministic methods, they use probabilistic models to find an
optimal solution. Random processes are used to search for an optimal solution. There are
several methods of stochastic optimisation, such as simulated annealing, particle swarm
optimisation, genetic algorithms and Bayesian optimisation. Simulated annealing is a
method that uses random search to find an optimal solution. In this process, an energy
level is calculated and reduced as the optimal solution is gradually approached. Parti-
cle Swarm Optimisation and Genetic Algorithms use populations and evolution to find
an optimal solution. Particle Swarm Optimisation simulates the behaviour of swarms or
groups of particles to collectively find an optimal solution. The position of each particle is
adjusted at each iteration to find the function maximizing variables. Genetic algorithms
are based on the idea of natural selection and evolution. Solutions are represented in the
form of chromosomes and evolve through crossover and mutation. Through continuous
evolution of the population, a better solution is gradually found. Bayesian optimisation
uses Bayesian statistics to find an optimal solution. It involves building a probability

46Zhang et al. 2021, “Dive into deep learning”.
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model that maps the relationship between the input and output variables. By combining
prior and likelihood functions, the optimal solution is calculated.

Machine Learning Optimisation Methods Machine learning based optimisation
methods represent another approach to optimisation and use algorithms and models from
computer science to find an optimal solution for a defined or even undefined function47.
These methods usually use the largest possible amount of data to train the model to
make the best decisions. There are several machine learning methods for optimisation,
such as stochastic gradient descent, reinforcement learning and artificial neural networks.
Stochastic Gradient Descent is a method that uses gradient descent techniques in combi-
nation with random processes to find an optimal solution. In this process, a cost function
is minimised step by step until the optimal solution is reached. Reinforcement learning
is a learning technique in which the system learns how to optimise its actions by inter-
acting with the environment. The system receives feedback in the form of rewards or
punishments for its actions and adjusts its strategy accordingly. In this way, the system
learns how to optimise its actions and achieve its goals. Artificial neural networks are a
well-known method based on modelling the neuronal structure of the human brain, which
makes them particularly suitable for processing large amounts of data. Like other meth-
ods, neural networks can be used for optimisation by creating a model of the function to
be maximised or minimised. A particular feature of neural networks is the creation of a
predictive function by training the neural network to find the optimal solution.

47Sebestyen and Tyc 2020, “Machine Learning Methods in Energy Simulations for Architects and
Designers”.
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Chapter 3

State of the Art

The following overview of significant academic research, studies and projects related to the
topic of this thesis is divided into four main areas: Graphs and Topology in Architecture,
Feedback in Early Design Stages, Architecture and Machine Learning, and Synthetic
Architecture Datasets. Each of these topics is further subdivided into several subtopics in
order to simplify and structure the reading. It is important to note, however, that a large
number of the references described do not easily fit into a single category, as most of the
works listed demonstrate a methodology that combines several topics, such as machine
learning, topology and automatic floor planning for instance. The literature listed below
represents essential sources for the elaboration of the topics covered in this thesis. Further
studies and research on the subjects covered are listed and evaluated in the section A.1
in the appendix.

3.1 Graphs and Topology in Architecture
A renewed interest in topological analysis approaches in architecture, as well as an in-
tensive engagement and research in the field of graph-theoretic methodology in data and
computer science in the last decades, has led to a variety of different research and projects
at the interface of both disciplines. The application of topological graphs and their in-
herent methods to the AEC industry has led to new design approaches and analysis
techniques that have the potential to significantly enrich architectural thinking. This
section reviews the state of the art of graphs and topology in the architectural context
by referring to the most relevant articles, books and experiments on and around these
subjects.

3.1.1 Graph Theory in Architecture
The theoretical field of graph theory has found diverse applications in architecture, par-
ticularly in the analysis of spatial structure, layout and organisation. The beginning of
the study of graphical relations and mathematics can be traced back to Euler in the year
1736. In the subsequent centuries multiple fundamental research has been conducted
around the topic. One of these contributions is the book Introduction to graph theory by
Wilson in which he introduces the concepts of graph theory through examples that define
the structure and components of graph networks and explain special cases and methods
such as paths, cycles, trees, planarity, digraphs and colouring. This lecture proved to be
a valuable source of information for an introduction to theorems and methods of graph
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analysis. In the same year Earl and March in their book “Architectural applications of
graph theory” deal with the application of graphs to two-dimensional architectural floor
plans in order to analyse and evaluate the connection of spaces and their arrangement in
the spatial layout design. Here, graphs are applied to the architectural example in two
different ways: on the one hand, they take the form of programmatic-organisational in-
formation and, on the other hand, they represent the structure and connection of the wall
elements represented by the edges of the graphs, whereby the empty area thus created
within the graph describes the rooms of the architectural object.

On a technical level, starting from a BIM model, the study “Analysis of building struc-
ture and topology based on graph theory” by Van Treeck and Rank derives four different
types of graphs: a structural element graph, a graph connecting room surfaces, a room
adjacency graph and a graph representing object relations. The relationship between
them is explained and the use of these networks as input for successful energy simula-
tions is demonstrated. Due to the interest raised by the combination of graph theory
and architectural practice, parallel research was carried out in several areas at the begin-
ning of this century. In this context and with a more interdisciplinary approach, Franz,
Mallot, and Wiener in “Graph-based models of space in architecture and cognitive sci-
ence: A comparative analysis” connect the broad field of psychology with architecture
by applying specific graph-based computational methods. The research includes spatial
cognition-based graphs such as the occupancy grid, place graph and view graph, as well
as architecture analysis-based graphs such as the access graph, axial maps, isovists and
Visibility Graph Analysis. The aim of this work is to demonstrate the application of
spatial cognition methods as design tools in architecture. Furthermore, the paper “Appli-
cations of graph theory in architectural analysis: past, present and future research.” by
Dawes and Ostwald adds to this psychologically oriented approach by critically examining
three essential methods of spatial syntax, namely axial line, convex space and isovists,
through architectural examples. He suggests ways to extend the established, abstract and
geometry-independent methods of analysis. The analysis tools developed aim to reconcile
space syntax theory with geometric and formal information.

The technical approach to incorporating graph-theoretic concepts into AEC was further
explored by Isaac, Sadeghpour, and Navon who, with “Analyzing building information
using graph theory”, provided a basis for integrating graph-theoretic analysis methods into
BIM models through a thorough study of IFC files and their ability to be synthesised into
semantic graphs that could in turn describe the hierarchical relationships of architectural
elements in the model. The authors further discuss significant advantages such as the
representation and mathematical analysis of abstract information through computational
graph algorithms. Another technical implementation of graph concepts is documented
in “Two-graph building interior representation for emergency response applications” by
Boguslawski et al. This paper develops BIM graph retrieval methods for the coordinated
emergency response of rescue teams and calculates safe routes, shortest paths and fire
spread within the model using graph analysis methods. The different types of graphs
used in this study are summarised under the concept of ’variable density networks’.

To conclude the general subject of the synergy between graph theory and architecture,
Nourian provides a general research on the application of graph theoretical concepts in
architectural design practice entitled “Configraphics: Graph theoretical methods for de-
sign and analysis of spatial configurations”. The motivation of this work was to provide
designers with a spatial configuration-based design practice that complements traditional
formal research. Within this framework, the configurative design toolkit ’Syntactic’ was
developed for the application of graph analysis in the field of AEC.
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3.1.2 Topology and Space Syntax
Similarly, topological analysis methods have found numerous applications in architecture
over the last century, particularly in relation to form finding, design optimisation and
spatial analysis. One of the fundamental literature in this field is the research of Kelley
published in his book General topology of 1955. This document represents an essential
resource in the field of mathematical topology as it thoroughly explains the fundamentals
and advanced methods related to the concept of topology. Of particular importance were
the explanations of elementary topics and algebraic concepts such as sets, relations and
Boolean operations such as union and intersection. Thirty years later, Baglivo and Graver
in their work, Incidence and symmetry in design and architecture extensively discuss
the connection of graph-theoretical concepts in the design context through topological
methods. The book begins by examining geometric symmetry through the application
of graph-theoretic methods, then progressively delves into topological transformations,
ultimately relating them back to graph-theoretic concepts.

Space significantly influences social structures and behavioural patterns, and society in
turn has a considerable impact on its physical environment. This interaction has been
intensively analysed in the foundational book The social logic of space by Hillier and
Hanson, which explores the influence of buildings and urban structures on the formation
of social patterns. It further develops tools that combine social and cultural approaches
with constructive ones, such as the methods of analysis collectively known as space syn-
tax. Following this publication, technical implementations of the theory introduced were
carried out in 2009 by Y. Li et al., among others. The paper, Design with space syntax
analysis based on building information model, presents and discusses the implementation
of a space syntax analysis tool during the initial design phases. The developed feed-
back and analysis software, called ’Archispace’, can analyse and evaluate BIM models in
terms of various space syntax methods such as connectivity, integration and intelligibility.
During this study, the authors identify several challenges in applying space syntax con-
cepts to BIM models, such as the lack of a unified topological syntax or interoperability
with the IFC file format. The preoccupation with combining digital analysis tools and
spatial syntax concepts was further explored by Nourian, Rezvani, and Sariyildiz in the
study “Designing with Space Syntax: A configurative approach to architectural layout,
proposing a computational methodology”. In the course of this work, a complete design
pipeline with integrated analysis metrics was developed. The user defines the program
using a graph and has the additional possibility to impose certain geometric requirements.
The algorithm then provides different floor plan suggestions with individual room syntax
evaluations, thus enriching the design process.

In 2018, Aish et al. document the developed topological software toolkit called ’Topo-
logic’, which establishes the connection between architecture and discrete mathematical
operations by dividing the architectural model into elements of different hierarchies and di-
mensions. This ultimately enables topological analysis and Boolean operations, including
neighbourhood and lateral relationship queries. In addition to presenting the functionality
of the software toolkit, a subsequent publication in the same year, “Topologic: A toolkit
for spatial and topological modelling”, describes two applications of the software in the
AEC domain. Firstly, the generation of non-manifold topological models used as input
for energy simulations is considered, and secondly, the possibility of structural analysis
and simulations through topological models is explained.

Finally, in the year 2021, a concrete analytical application of space syntax methods using
three villas designed by Palladio is demonstrated in “Examining control, centrality and
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flexibility in Palladio’s villa plans using space syntax measurements” by Dawes, Ostwald,
and J. H. Lee. The authors focus in particular on evaluating the importance of the main
salon and the overall flexibility of the spatial layout through the creation of so-called
justified plan graphs.

The overview of the current state of research in graph theory and topological approaches
in the context of architecture demonstrates the diversity and wide range of different
research and application areas within the fields under consideration. However, it becomes
clear that research into topological graphs in architecture is still in its infancy. This
is partly due to the short time that has elapsed since the two subjects were brought
together and applied in the architectural design process, and partly due to the lack of
uniform design languages and processes in the AEC industry. It becomes thus apparent
that, despite remarkable progress in the respective fields, the integration of graphs and
topology in architecture is still an emerging area of research with room for further study
and experimentation in order to apply the full potential of these mathematical concepts
in the context of conventional architectural practice.

3.2 Feedback in Early Design-Stages
Early design stages are critical to the success of an architectural project, as they form
the solid basis for later decisions and developments. Feedback about the design intentions
and individual decisions during these preliminary steps is therefore essential to potentially
optimise the design, identify problems and develop solutions. Likewise, performative
feedback in early project phases can have significant economic and environmental benefits
and is therefore of great value during the initial design process.

3.2.1 Decisionmaking and Feedback-Tools
In recent years, several techniques, tools and prototypes have been developed to provide
feedback to designers during the initial design iterations. In particular, the application of
computational methods has allowed a diverse exploration of different tools and algorithms
to provide optimisation and support the decision-making process.

In this regard, the development and training of a neural network model that predicts the
heating and electricity energy consumption of school buildings is described by Paterson et
al. in their publication, “Real-time Environmental Feedback at the Early Design Stages”.
The resulting toolkit, SEED, could provide energy performance during the design pro-
cess based on specific design parameters such as glazing ratio, floor area orientation and
others. However, the achieved accuracy of 40% still leaves room for improvement. In
order to successfully perform conventional energy simulations, BIM models often require
substantial simplification at the geometry level. The research, “The effect of reducing
geometry complexity on energy simulation results” by Chatzivasileiadi et al., investigates
the extent to which this geometric abstraction affects the simulation results and to what
point geometric simplification is possible without causing significant issues and loss of
accuracy during the simulations.

Addressing the ambiguity between the need for early energy consumption simulations
and the significant time and resource investment, Singh et al. apply in 2020, neural net-
works to predict energy consumption of buildings. The developed methodology allows
the prediction of both embodied and operational energy demand during the initial design
phases, providing a feedback function for the overall energy performance without any spe-
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cial effort or knowledge required from the designer. One year later, to provide continuous
feedback on the performance of designed floor plans in terms of daylighting and energy
performance, Yousif et al. similarly trains a neural network with labelled floor plans. The
resulting modified Pix2Pix generative adversarial network (GAN) is capable of predicting
heat maps for new floor plans with a high degree of accuracy. However, this method is
limited to the second dimension and requires a pixel-based representation of the floor plan
as input.

3.2.2 Optimisation in Early Design-Stages
A particular type of feedback function in design processes is the analysis of information
about the performance of the designed layout, allowing the application of optimisation
algorithms with the aim of automatically improving the design with respect to the chosen
performance parameter at an early stage. In this context, a wide range of algorithms such
as evolutionary approaches or simpler function optimisation computations have found
their application in the architectural context. However, meta-heuristic or multivariable
approaches have the significant disadvantage of being very time consuming and resource
intensive. To address this issue, the study “Parallel planning-An experimental study
in spectral graph matching” by Schaffranek introduces methods for optimising multiple
parameters through spectral graph matching based on graphically encoded information.
The main advantage of this method is that, unlike conventional methods, it does not rely
on iterative processes, thus avoiding significant time overhead. However, the algorithm
can only take into account information that can be represented in graphical form, which
significantly limits its applicability. In addition to multivariable optimisation methods
in the design process, the research carried out by Canestrino et al. in the year 2020
provides applications in constructive detail design using a complete BIM model. This
study emphasises the importance of optimisation methods in the automatic exploration
of a variety of different design and construction solutions.

The attempt to provide designers with a set of tools during the design process to achieve
an optimised adjacency of programs and spatial functions through the application of
graph centrality-based design heuristics is documented in “Space Matcher” by Fuchkina
et al. Topological-graphic analysis methods such as distance mapping and shortest path
calculation, in conjunction with fuzzy logic evaluation, are used in the course of this
research to find the best-optimised adjacency variant of the rooms in the floor plan.

Finally, to achieve parallel optimisation of spatial configuration and function, Muslimin
discusses in “Experience Grammar: Creative Space Planning with Generative Graph
and Shape for Early Design Stage” his experimental combination of shape grammar and
spatial syntax. The author was able to extend the syntax of the shape grammar with
topological rules based on the computation and analysis of graph-theoretical methods in
order to create an optimisation tool that can generate shapes and layouts according to
space syntactic metrics.

3.2.3 Performance-Based Design
The designer is always concerned with performance in the broadest sense of the word in
architecture, which means that automatic feedback on these very evaluation metrics can
bring significant benefits. As an umbrella term, these approaches can be described as
performance-based design, where the primary goal is to develop tools and methodologies
for continuous performance evaluation that can complement traditional modelling and
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conceptualisation processes. As this is a relatively recent research topic, the progress
made over the last decade will be presented in chronological order:

The Generative design system, developed by Caldas and Luìs Santos and documented
in “Generation of Energy-Efficient Patio Houses With GENE-ARCH”, combines shape
grammar with an energy simulation engine to optimise houses with a patio typology using
evolutionary algorithms. The choice of energy performance as the optimisation metric
allows for an automated performance-based design process. Furthermore, in order to
clarify the requirements for performance analysis, Jabi in 2015 investigates the importance
of non-manifold topology-based models for building performance simulation in the early
stages of the design process. It is shown that this type of geometry representation, with
its division into hierarchical subelements and high level of abstraction with limited loss
of information, is well suited as input geometry for subsequent energy simulations. This
implies the importance of a tool for extracting non-manifold geometry from existing BIM
models at different levels of detail and project stages.

The meta-analysis of the application of evolutionary optimisation algorithms in the field
of AEC, carried out in 2021 by Canestrino, demonstrates that there will always be limita-
tions to the application of optimisation algorithms during the design process. Not every
architectural criterion can be abstracted to act as an evaluation metric for optimisation
methods. The most common application of such algorithms is therefore limited to clearly
defined elements and fitness criteria, such as the performance of shading systems or the
formal appearance of a building in terms of its Daylight Factor. In this context, Rogers
et al. developed a simple performance-oriented simulation technique in 2022 that does
not rely on such optimisation algorithms. Rather, it integrates graph-theoretic analysis
with congestion path finding and building usage data such as schedules, walking speed,
origin and destination, allowing for agent-based simulation along specific paths to identify
potential bottlenecks in the overall circulation system.

The contributions presented show that feedback in early design stages can be of signif-
icant importance in optimising the design process and improving the architectural and
technical quality of the outcome. In recent years, numerous methodologies and tools
have been developed to assist architects, mainly through decision support systems such
as computer-aided and algorithm-based technologies. However, this area of research is
far from exhausted, and new studies and experiments are published on a weekly basis,
with new results showing novel applications and potentials for the architectural design
workflow. This is particularly relevant in the context of the recent resurgence of interest
in machine learning and artificial intelligence.

3.3 Architecture and Machine Learning
As a discipline that has been increasingly applied to more and more different fields for
some time now, machine learning methods have also taken on various roles in architecture.
In most cases, however, these applications are primarily experimental or artistic, and are
accompanied by a wide range of different research, studies and experiments. The following
section presents research on the role of machine learning in the AEC industry, categorised
into different subtopics, ranging from literature on the impact on the field to specific
research on graph machine learning applications.
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3.3.1 Impact of Machine Learning
To begin with, the general implications of integrating machine learning methods into
architectural practice are considered, as well as the new questions and issues raised by
this combination.

In the context of an experimental application of Generative Adversarial Networks (GANs)
for architectural plan generation purposes, the work “How Machines Learn to Plan - A
Critical Interrogation of Machine Vision Techniques in Architecture.” by Campo discusses
the potential role that machine learning can play in the conventional design process and
to what extent this might already be possible. Important aspects such as creativity and
stylistic aspects are examined and discussed in detail from an architectural perspective.
On the other hand, a much more technical look at the application of computational
methods in the AEC industry is provided by the anthology The Routledge companion to
artificial intelligence in architecture in 2021. Structured around subthemes ranging from
theoretical foundations to artificial intelligence in architectural practice, a selection of
authors provide insights into the various benefits, challenges and implications of adopting
machine learning concepts in the field of architecture and construction. Particularly
helpful for this work was the section entitled “AI in space planning” by Nagy.

On a broader level, the publication “Limits to Applied ML in Planning and Architecture”
by Joyce and Nazim presents a cautious and realistic meta-analysis of the limitations of
integrating machine learning-based tools in the architectural domain. Various topics such
as scale, representation, input data, resolvability, creativity, autonomy and design quality
are identified and discussed. In strong contrast to this literature, Chaillou in Artificial
Intelligence and Architecture: From Research to Practice offers an optimistic outlook on
the future synergy between architecture and artificial intelligence. Current applications
such as floor plan design, urban planning, automatic facade conception, structural de-
sign and predictive simulations through DaylightGAN and ComfortGAN are examined.
Finally, potential application areas are presented which, according to the author, could
benefit from the use of artificial intelligence.

3.3.2 Design and Optimisation Applications
Looking at some concrete implementations of machine learning in design practice, the
primary use can be seen as a support and optimisation system during the design process
in architecture. For example, in the study conducted by Hauck in 2017, a neural network
is trained to directly predict the energy performance of a designed architectural object,
avoiding the costly detour via thermodynamic and energy simulations. The input fea-
tures, collected in tabular form for training, consist of essential characteristics related to
geometric and energetic parameters of the designed three-dimensional layout. Another
type of machine learning based optimisation of architectural objects is presented in the
publication “The synergy of non-manifold topology and reinforcement learning for fire
egress” by Jabi, Chatzivasileiadi, et al. This work combines topological building graphs
with reinforcement learning methods to find optimal escape routes in the event of a fire in
the building being studied. What makes this experiment interesting is that the simulated
fire sources have both a three-dimensional spread and a temporal component, justifying
the application of unsupervised reinforcement learning. The work demonstrates the po-
tential of using abstract geometric representations through non-manifold topology and
graphs in conjunction with advanced machine learning methods.

The term surrogate model refers to the method of replacing a variable that is difficult
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to compute with an approximated function. This concept is explored in “Deep learning
surrogate models for spatial and visual connectivity” by Tarabishy et al. using a trained
neural network to accelerate the prediction of spatial syntax metrics such as spatial and
visual connectivity. The pixel-based generation and training pipeline is thoroughly docu-
mented and explained throughout the paper.

Finally, in the topic of design and optimisation applications of artificial intelligence in
the context of architecture, Chaillou takes a creative and experimental approach to the
application of GANs in the architectural floor plan generation process, demonstrating
an interesting use of deep learning concepts in the form and style finding process. The
technical documentation of the training and evaluation processes is complemented by
extensive research on learning and combining different architectural styles from different
periods, recently published in 2021.

3.3.3 Graph Machine Learning in Architecture
The concept of graph machine learning is relatively new in computer science, and thus
has only been applied to architectural research and practice since around 2020. However,
the fundamental importance of graph theory in the discipline of architecture makes it
clear that there is great potential for such deep learning methods in this field. Some of
the main contributions to this topic are listed below.

Semantic enrichment refers to the process of adding descriptive information to an exist-
ing model. In the study “Room Type Classification for Semantic Enrichment of Building
Information Modeling Using Graph Neural Networks” by Z. Wang et al., Graph Neural
Networks, specifically a GraphSAGE model, was trained to predict the function of indi-
vidual rooms in a BIM model with high accuracy. This application could potentially be
extended to other elements of the architectural model, enabling interoperability through
augmented BIM data. Extending the research topic of room classification methods, the
“Room-based energy demand classification of BIM data using graph supervised learning.”
experiment published in 2021 experimented with classifying the energy consumption of
individual rooms in a BIM model using supervised graph deep learning algorithms based
on the GraphSAGE method. The model is thus able to predict the labels of individual
nodes in a graph object.

Using transfer learning methods, the publication “Autocompletion of Design Data in
Semantic Building Models using Link Prediction and Graph Neural Networks” by Eisen-
stadt, Bielski, et al. developed and evaluated the prediction of connections between in-
dividual programs in an architectural project. The trained graph neural network can
autocomplete partial layout graphs and predict the probability of edges between nodes
with high accuracy. This approach can be combined with node or edge classification to
predict room functions and the types of connections between them. In terms of graph-
wide prediction, Alymani, Jabi, and Corcoran explored the application of a Deep Graph
Convolutional Neural Network to synthetically generated building graph datasets with
different ground relations in two publications between 2022 and 2023. The trained graph
neural network is thus able to accurately predict the ground relation of new graph ob-
jects. The framework of this research included supervised learning methods such as graph
classification and unsupervised learning methods such as clustering.

Taken as a whole, this research demonstrates the versatility of machine learning in the
field of Architectural Engineering and Construction. It is possible to optimise topological
arrangements, improve selected performance characteristics such as energy efficiency, and
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provide a detailed understanding of spatial structures. It should be noted, however, that
the field of machine and deep learning in architecture is in constant evolution and there
are still many open questions and challenges. In particular, questions remain about the
interaction between human designers and machine learning systems, the interpretability
of machine learning models, and the adaptability of these techniques to different contexts
and requirements.

3.4 Synthetic Architecture-Datasets
With the increasing adoption of machine learning methods in the design process, there
is a growing need for qualitative architectural datasets that represent specific aspects of
the project as well as possible. Questions about the state of the art in the generation and
development of these datasets, their different forms and their multiple applications are
explored in the following sections.

3.4.1 Parametric Design and Algorithms
The creation of such data requires the application of parametric design principles as well
as the definition and formulation of certain architectural rules and conditions. This has led
to extensive research and experimentation on these concepts and their adaptation to allow
the construction of appropriate and qualitative frameworks for architectural generation
pipelines.

The algorithm developed in “An algorithm for exhaustive generation of building floor
plans” is able to generate optimised rectangular floor plans based on variable input pa-
rameters such as total area, room areas, wall lengths, room adjacencies and room ori-
entations. The research conducted by Galle in 1981 laid the groundwork for subsequent
experiments by introducing geometric partitioning methods, iterative division and graph-
theoretic adjacency calculations.

Regarding the purely algorithmic tools for automatic architecture generation, several
different methods and approaches have been identified in the course of the research.
Treemaps, which are primarily used to visualise related quantities and offer interesting
properties for constraint-based space allocation, form the first advanced space partitioning
algorithm. However, they are limited to dividing purely rectangular areas. In their study
from 2005, Balzer and Deussen present a Voronoi diagram-based form of treemaps that
can allocate desired percentages to a broader set of shapes, including irregular polygons.

An extension of the Voronoi diagram presented here is the weighted Voronoi diagram
or Laguerre Voronoi diagram, which is explored in the context of urban planning by
Anuradha, Sabnis, and Thirumavalavn in 2008. The regulation of Voronoi cell sizes rep-
resents a significant advantage in the field of automated space subdivision. The influence
of individual Voronoi seeds could thus be determined by adding individual weight val-
ues and corresponding weight-distance functions to the diagram points. In addition to
the weight function, the morphology of the computed regions can also be regulated by
this approach. In this context, Y.-C. Wang, Lin, and Seah, with a publication entitled
“Voronoi diagram voro: Application of interactive weighted Voronoi diagrams as an alter-
nate master-planning framework for business parks.”, introduces a new algorithm based
on an orthogonal Voronoi diagram and an adapted distance and neighbourhood function,
as well as a modified sweep-line algorithm for computing orthogonal Voronoi treemaps.
This method combines the advantages of each technique, providing accurate percentage
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control through treemap calculation, flexibility through Voronoi diagram structure, and
avoidance of irregular space generation through orthogonal shape generation.

3.4.2 Automatic Floor Plan Generation
When dealing with geometric floor plan data based on buildings or even apartment com-
plexes, the application of automatic floor plan generation methods is almost inevitable.
This topic comes with its own set of implications and challenges, partly caused by the high
degree of freedom inherent in the conceptual architecture process. The main experiments
of the last decade are listed and explained here in chronological order:

In 2010, Knecht and König discuss the application of K-dimensional trees using evolu-
tionary optimisation algorithms for the automated generation of floor plan layouts. The
binary tree structure of K-d trees proved advantageous in the context of regulated space
allocation, as a certain degree of controllability is provided through the initial definition
of points in two or three dimensional space. Another type of partitioning algorithm is
the so-called squarified treemap, which constitutes a variant of the regular treemap al-
gorithms with the advantage of generating regions with high aspect ratios, resulting in
more square-like spaces. This algorithm is introduced in “Automatic real-time generation
of floor plans based on squarified treemaps algorithm” by Marson and Musse, who ex-
plain the structure and functionality of such methods and test them on an architectural
example. The published paper additionally discusses approaches to automatic corridor
generation.

Staying within the topic of automatic floor plan generation, the paper “A graph theoret-
ical approach for creating building floor plans”, by Shekhawat and Duarte explains the
development of an algorithm that employs graph-theoretic methods to generate a rect-
angular floor plan (RFP) based on a given adjacency graph. If this is not possible, an
orthogonal floor plan (OFP) is constructed. This research is essential as most automatic
floor plan algorithms generate rectangular floor plans exclusively, thus limiting the variety
and design possibilities.

After several years of research in this area, Egor et al. in the year 2020 provide a collection
and analysis of existing room layout generators, combined with newly developed methods
and extensions of existing research. This analysis led to the implementation of a so-called
’Magnetizing Floor Plan Generator ’, which respects the desired adjacency of individual
rooms and their functions through iterative placement. An interesting aspect of this
methodology is the introduction of corridor elements to address the issue of gaps between
the generated room geometries.

3.4.3 Architectural Datasets
What forms can these datasets take and what information do they contain? What are
the most common datasets and what are potential issues in their application? To explore
these questions in more detail, it is necessary to take a look at the main research around
the topic of dataset generation and to examine some example datasets.

The research carried out by Kalervo et al. and published under the title “Cubicasa5k:
A dataset and an improved multi-task model for floorplan image analysis” in 2019 re-
sulted in the creation of a dataset containing 5 000 annotated, cleaned and vectorised
floor plans. The dataset was generated using neural networks for architectural element
recognition. It further provides an organised structure with polygonal room divisions
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and categorisation of individual elements and spaces, serving as a qualitative basis for
training various deep learning methods in the architectural context. Building upon this
vector-based Cubicasa5k dataset, two years later Lu et al. succeeded in synthesising a
high-quality architectural graph dataset by applying relation detection methods to the
Cubicasa5k data. A major advantage of this new set is the annotated graphs, which in-
clude node labels corresponding to room functions and edge labels describing the nature
of room relationships. Furthermore, there is potential for combining the Cubicasa and the
newly created Cubigraph datasets, as their datapoints correspond and their information
is complementary.

Finally, the approach described in the work of Chen and Stouffs and published in a paper
named “Robust Attributed Adjacency Graph Extraction Using Floor Plan Images” in 2022
demonstrates a method for the extraction of attributed adjacency graphs from pixel-based
floor plan representations using image segmentation algorithms. The resulting graph
dataset, generated using ensemble learning methods, includes node labels that provide
information about the nature of the architectural element. The dataset has been released
under an open source licence and is therefore well suited for further research on the topic.

From the literature cited, it is apparent that the creation of qualitative datasets is an
important step in enabling the application of machine learning to the field of architecture.
By employing Building Information Model and floor plan generation algorithms, as well
as appropriate optimisation methods, researchers and architects can generate a variety
of synthetic datasets that can be used to train and validate machine learning models.
These synthetic datasets, in combination with data science methods, can help to improve
the design process, optimise the performance of buildings or even develop new design
concepts. The challenges and open questions identified during the literature review on
synthetic architectural datasets mainly concern the quality and representativeness of the
architectural data, as well as the origin bias that may be present in the information.
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Part II

Contribution





The methodological part of this thesis serves to document the experiments carried out,
which include the creation of a synthetic architectural graph dataset and the training
and evaluation of different graph machine learning models. These experiments are the
synthesis and application of the methods introduced in the theoretical framework, which
come from different fields such as mathematics, geometry, urban studies, sociology and
computer science, in order to propose answers to the stated research questions. To ensure a
clear structure of the methodology, the essential steps and results of the experiments have
been documented. However, it is important to mention in advance that the experiments
presented are the result of a series of iterative processes, in which a multitude of different
methods were tested in order to select the most appropriate approach.

The first part of the methodology deals with the application of different space partitioning
algorithms that, integrated in a parametric framework and combined with architectural
rules and conditions, initially allowed the creation of an architectural three-dimensional
dataset. The resulting apartment geometries could be enriched with various information
using topological methods to finally generate semantic topological graph networks corre-
sponding to the individual apartment layouts. The added information includes categorical
descriptions of each room, such as living room, bedroom, toilet, bathroom or utility room,
but also typical descriptions such as apartment, window or room on a general level. Addi-
tionally, dimensional and geometric attributes have been included, providing information
on the orientation and dimensions of each element.

Essential for the usefulness of the dataset is any information that allows statements to
be made about the energy efficiency of the individual apartment layouts and is stored
at the cellcomplex level. For this purpose it was necessary to subject each individual
three-dimensional BIM model to accurate energy simulations and to evaluate the results.
Accordingly, the resulting dataset contains 40 000 graph objects describing the topolo-
gies of the architectural objects, enriched with information about the dimensions and
orientations of the individual elements. Each of these graph objects is assigned an energy
efficiency value and a class, which are used as training data in the subsequent model train-
ing phase. The parametric, automatic generation of a synthetic dataset is in stark contrast
to the conventional method, which is usually based on the accumulation, adjustment and
annotation of reality-based architectural plans.

The second part of the experimental phase builds on the results of the first part and
allows to evaluate the relevance of the dataset. This involves the application of graph ma-
chine learning to the generated knowledge graph objects in order to learn the relationship
between the topology of the apartments and their corresponding energy efficiency. Two
different supervised learning approaches are demonstrated, which differ to some extent in
their possible applications.

The first step of the machine learning experiment is to design a classification model capable
of categorising the unseen apartment graphs into their corresponding energy efficiency
classes. In order to be able to define these energy classes, it is necessary to create a
relative energy consumption scale due to the high level of abstraction in the structure of
the energy simulation framework parameters as well as in the geometric composition of
the individual apartment layouts. This measure takes into account the entire dataset and
creates a new scale by dividing it into quantiles (table B.10). The accuracy of the trained
model is then compared to other models, trained on tabular information rather than
graphical data, in order to evaluate the benefits of graph machine learning methods in
the context of energy efficiency classification compared to conventional machine learning
algorithms.
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Figure 3.1: Experimentation Overview

The second deep learning method is to build a regression model that allows accurate
prediction of energy consumption in MJ/m2 from unseen topological knowledge graphs.
This involved modifying and adapting the training setup of the Deep Graph Convolutional
Neural Network and its model architecture to enable the regression task. The resulting
model is then likewise compared with conventional regression models to make statements
about its precision.

Figure 3.1 shows the overall process combining the two steps of dataset generation and
graph machine learning. The continuous arrows show the principal workflow, while the
dotted lines provide additional information about the steps required to accomplish the
principal tasks. The diagram is divided into three colours, where green represents the
dataset generation process and its subtasks, blue provides information about the compo-
sition of the data enhancement and the information generation through simulation, and
red indicates the graph machine learning framework, which forms the final step of the
experimentation.
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Chapter 4

Synthetic Dataset Generation

Datasets form the elementary basis of data science methods such as machine learning, as
this discipline is concerned with identifying regularities and correlations in the available
information using large amounts of data. The patterns and trends in the dataset are
recognised and used by a machine learning algorithm to perform the predefined task of
the model. As the task of the experimentation involves supervised learning, it is essential
that the dataset contains labels corresponding to the desired outcomes, in addition to the
training information. This implies that the energy consumption value and energy class in
the dataset must be assigned as a value to each corresponding datapoint.

One of the main requirements for the synthetic architectural dataset in this thesis is to
have as much variation in the design layout as possible, so that a large number of different
room arrangements and apartment morphologies can be associated as training data with
their respective energy efficiencies. This allows for some generalisation in the application
of the trained model. Typically, datasets in computer science have a tabular form and are
represented by numerical values. Accordingly, architecture, as an artistic and geometric
discipline, poses a challenge for the creation of datasets, because architectural geomet-
ric objects such as rooms, houses and apartment complexes, as well as their individual
programs and structures, cannot be represented in an intuitive way as tabular, numerical
data.

To solve this problem, several methods for representing architectural data in a machine-
understandable form have emerged in recent years1. It is always important to distinguish
what the desired output of the trained model is, as this has a significant impact on the
requirements on the training dataset. The most common data representation is the one
that has been used in architectural practice since the beginning of the profession, namely
the representation by pictorial cross-sections of the architectural object, such as plans and
sections.

The advantage of an image-based data representation is that it forms an integral part of
the architectural representation, and thus a wide range of real data derived from scanned
or digitally created plans is available. Furthermore, plan representation is deeply rooted
in architectural practice, with many design processes traditionally focused on the two-
dimensional plan level. As a result, plan representation has become a synthetic form of
presentation that provides insight into unmapped elements of the architectural object by

1Kalervo et al. 2019, “Cubicasa5k: A dataset and an improved multi-task model for floorplan image
analysis”.
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adding semantic and descriptive information. In addition, there are usually several levels
of detail in the two-dimensional plan representation of a project, as different instances in
everyday architectural practice have different requirements for architectural plans. This
enables the aggregation of multiple layers of information, all relating to the same object.

As with conventional machine learning based on image data, the bitmap pixels are tabu-
lated with their colour values, resulting in a machine-readable table of values as a dataset.
However, a major drawback of this conventional way of creating architectural datasets is
the significant loss of information at multiple levels due to the pixel representation of
architectural objects. Conceptual and programmatic information, such as the use of indi-
vidual spaces, their topological relationship to each other, their extension into the third
dimension, as well as information on materials and morphological properties, are difficult
and, above all, inconsistent to represent in architectural plans. This means that this in-
formation cannot be taken into account during the training phases, even though it may
represent elementary information.

Furthermore, pictorial datasets in architecture are associated with high memory and com-
putational requirements, as they usually contain a large amount of non-informative areas,
such as the white framing around the project. Architectural plans are often annotated
with handwritten or computer generated annotations, which do not follow any uniform
rules and therefore have to be removed in several successive filtering processes in order
not to contribute to unwanted noise in the dataset2. In this work, an attempt is made
to counteract the aforementioned drawbacks of traditional datasets by representing ar-
chitectural objects not in pictorial form, but through topological graphs enriched with
additional information, which can thus be called a knowledge graph dataset.

4.1 Space Partitioning
Since the synthetic data generation approach requires an automated algorithm, it is first
necessary to consider the appropriate application of a geometry generation method. Basi-
cally, the objective is to develop a pipeline that takes specified architectural guidelines as
input and generates a floor plan as output, which can then be automatically transformed
into a full three-dimensional BIM model in subsequent steps.

It is essential that these methods have a degree of randomness to allow for the greatest
possible morphological diversity in geometry generation. The process of choosing the ap-
propriate space partitioning method is intended to compare as many different algorithms
as possible in order to make a selection of suitable methods that could be integrated
into the generation pipeline. As the aim was to develop as large a dataset as possible,
properties such as the speed of the methods and the computational requirements were
considered more carefully. However, the quality and especially the variety of the gener-
ated geometries was deemed to be the most important property for the selection of the
algorithms.

2Newton 2019, “Deep generative learning for the generation and analysis of architectural plans with
small datasets”.
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4.1.1 Algorithms
As presented in the theoretical framework, a variety of different automatic floor plan
generation methods exist3, some of which can be combined with different optimisation al-
gorithms, and can be roughly divided into grid-based, subdivision or aggregation methods.
In general, aggregation methods are much more computationally intensive and complex
than subdivision or grid methods. However, this increased complexity also leads to in-
creased variety between each generated layout, which is a significant added value in the
demonstrated methodology. Finally, due to resource constraints, it was decided to in-
clude only three algorithms, coming from the subdivision family, in the final generation
pipeline. However, in order to present a comprehensive picture of the experiments and to
provide a basis for further research, methods that were ultimately deemed unsuitable for
the generative pipeline for various reasons are equally presented.

4.1.1.1 Subdivision

The simplest methods for automatic space segmentation come from the family of subdi-
vision algorithms, which, as the name suggests, subdivide a previously defined shape into
a desired number of polygons according to defined rules. As they are mostly simple algo-
rithms, they all share the advantage of being computationally inexpensive and therefore
relatively fast in their execution. However, in order to integrate any method from this
family of algorithms into an automatic pipeline, an parametric generation of the initial
shape to be divided must first be considered.

Initial Shape A common method of automatically generating irregular convex polygons
is to apply a convex hull algorithm4 to a two-dimensional set of points. This involves first
randomly placing a defined or arbitrary number of points in two-dimensional space. The
amount of points is not important as long as there are more than two; however, a larger
number of points increases the probability of generating a polygon with an equally larger
number of sides. Once these points have been placed, the convex hull can be calculated
and thus create the initial shape for the generation pipeline. However, a major drawback
of this method is that it is only suitable for generating convex figures, making concave
plans impossible.

In order to remain true to architectural reality, it is equally important to generate rect-
angular plans as well as their derivatives, which can be generated by shifting individual
vertices of the rectangles. This is possible through the application of simple algebraic
operations and does not require the use of established algorithms. Furthermore, by using
orthogonal convex hull algorithms5 (figure 4.1), the variety of basic shapes to be generated
can be increased, since this is a method that generates rectangular polygons, analogous
to ordinary convex hull methods, based on a randomly placed set of points in the two-
dimensional space.

3Egor et al. 2020, “Computer-aided approach to public buildings floor plan generation. Magnetizing
Floor Plan Generator”; Lopes et al. 2010, “A constrained growth method for procedural floor plan
generation”; Nisztuk and P. B. Myszkowski 2019, “Hybrid evolutionary algorithm applied to automated
floor plan generation”.

4Anuradha, Sabnis, and Thirumavalavn 2008, “Voronoi diagram voro: Application of interactive
weighted Voronoi diagrams as an alternate master-planning framework for business parks.”

5An, Huyen, and Le 2021, “A modified Grahams convex hull algorithm for finding the connected
orthogonal convex hull of a finite planar point set”.
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Figure 4.1: Orthogonal Convex Hulls

Recursive Subdivision Using a simple recursive subdivision method, the initial shape
is iteratively sliced so that the parent shape is split into two equally sized child shapes.
This method works for rectangular bases, but can cause problems when convex or concave
polygons are involved. One way to have more influence on the position of the cutting
planes is to define percentages for the positioning of the slicing faces in relation to the
two-dimensional depth of the shape being divided. This can be re-evaluated from iteration
to iteration (figure 4.2), allowing it to adapt to irregular shapes.

Another derivative of the recursive subdivision method can be recursive quad-division,
which, unlike the conventional method, does not divide the parent surface by a straight
line in the X or Y direction, but instead performs a division from the centroid of the
geometric shape to the center of the edges of the polygon, resulting in at least three quad-
edged child polygons. This subdivision method is particularly suitable for irregular convex
shapes, as it avoids unwanted intersections. Also of interest is the recursive bent bisection
method, which instead of straight cutting surfaces introduces a bend in the cutting surface
at a random or defined point. This simple modification can lead to a great variety in the
resulting design, but does not solve the problems encountered with the simple recursive
subdivision method.

Squarified Treemap The squarified treemap algorithm6 originally comes from the fam-
ily of data visualisation algorithms. It is based on the creation and ordering of the spatial
quantities to be created in a binary tree structure, where the values are ordered in advance
to produce the most optimal subdivision. The cutting method is not much different from
a conventional recursive subdivision, but in a squarified treemap the resulting spaces in
the generated layout are calculated to be as quadratic as possible, which means that the
quotient of two adjacent edges is as close to 1 as possible. A major advantage of this
method is that the percentage size of the spaces can be defined in advance (figure 4.3),

6Marson and Musse 2010, “Automatic real-time generation of floor plans based on squarified treemaps
algorithm”.
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(a) Second Iteration (b) 4th Iteration (c) 6th Iteration

Figure 4.2: Recursive Subdivision

(a) 4 Spaces (b) 6 Spaces (c) 7 Spaces

Figure 4.3: Treemap Subdivision

allowing finer architectural control over the generation process. However, this method
only works for rectangular solids and is therefore not suitable for a generation pipeline
where polygons are also desired as initial shapes.

K-Dimensional Tree When using a k-dimensional tree7 for space partitioning, new
requirements are placed on the input. In order to perform a successful space subdivision
with a satisfactory level of control, a two-dimensional set of points is required to be
located on the initial shape. These points will be inside the respective spaces of the fully
partitioned surfaces and can thus serve as a basis for a rough local determination of the
position of the individual spaces in advance (figure 4.4). This ability to predetermine
the approximate division of space by placing points on the two-dimensional body is an
advantage over other methods. This can be achieved by simple random or rule-based point
placement methods. Furthermore, the algorithm works not just on rectangular solids
but also on convex polygons (figure 4.6). This algorithm allows seamless subdivision of
rectangles with a particularly low edge ratio (figure 4.5) but does however not allow to
define the desired percentage areas of the individual spaces in advance, as in the example
of the squarified treemap algorithm.

7Knecht and König 2010, “Generating floor plan layouts with kd trees and evolutionary algorithms”;
Das et al. 2016, “Space plan generator: Rapid generation and evaluation of floor plan design options to
inform decision making”.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 4.4: K-d Tree Subdivision

Figure 4.5: K-d Tree Subdivision of Stretched Rectangle

Figure 4.6: K-d Tree Subdivision of Irregular Polygons
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(a) 5 Cells (b) 20 Cells (c) 50 Cells

Figure 4.7: Voronoi Subdivision

Voronoi Diagram The initial requirements for Voronoi diagram subdivision methods
are similar to those for k-dimensional trees, since they also involve defining points on the
initial shapes in advance. However, the body to be subdivided can be any convex as well
as concave polygon, allowing for greater diversity in layout generation. The points on
the surface are first connected to each other and to the vertices of the base body by a
Delaunay triangulation, so that each point is connected to another by an edge. Then the
Voronoi diagram is computed so that the points become Voronoi seeds and all points that
are closer to one seed than to any other point of the body are bounded by a Voronoi cell
(figure 4.7). These cells are irregular polygons whose shape is defined by the distance of
the triangulated point mesh only. This means that the spaces generated in this way tend
to have irregular shapes, which is an architectural challenge, since in construction reality,
although it is not impossible to build irregular spaces, a general convention is to design
spaces that are as orthogonal as possible.

In order to deform the irregular Voronoi cells into polygons that are more regular, various
post-processing algorithms can be applied to the generated design. For example, a Lloyd
algorithm can iteratively shift the seed points to relax the Voronoi mesh, allowing initially
highly deformed cells to approximate more compact geometric shapes. This works by it-
eratively computing a new Voronoi diagram based on the continuous shift of the Voronoi
seed points towards the centroid of each Voronoi cell. It should be noted, however, that
this step-based algorithm is more resource intensive in terms of time and computing
power. Another way to generate more regular Voronoi cells is to use a semi-orthogonal
Voronoi diagram, where each cell has at least one orthogonal edge or completely orthog-
onal cells computed by the orthogonal Voronoi treemap algorithm8. Another drawback of
the Voronoi method is the lack of control over the resulting area dimensions of each cell, as
the method is point-based like the k-dimensional tree method. To overcome this problem,
weights can be assigned to each point in advance, so that by varying them the radius of
each cell can be precisely controlled; these diagrams are then called power diagrams or
Laguerre-Voronoi9 (figure 4.9).

8Y.-C. Wang, Lin, and Seah 2019, “Orthogonal voronoi diagram and treemap”; Chatzikonstantinou
2014, “A 3-dimensional architectural layout generation procedure for optimization applications: DC-
RVD”.

9Anuradha, Sabnis, and Thirumavalavn 2008, “Voronoi diagram voro: Application of interactive
weighted Voronoi diagrams as an alternate master-planning framework for business parks.”
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Figure 4.8: Three-Dimensional Voronoi Division

Figure 4.9: Laguerre-Voronoi Diagram
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(a) Weighted Graph (b) Grid (c) Iteration (d) Final Placement

Figure 4.10: Random Grid Assignment

4.1.1.2 Grid Planning

The basis of grid planning algorithms is the placement of a grid on the surface to be
subdivided. This basic requirement in itself introduces some issues and difficulties, since
the act of grid placement is in itself a subdivision of space. The simplest way of placing
a grid is to project a pre-established mesh onto the base to be subdivided, matching the
dimensions of the grid to the dimensions of the surface in two dimensions. This only gives
satisfactory results if the base is orthogonal and leads to unwanted subdivisions as soon as
convex or concave polygons are involved. To satisfactorily subdivide irregular polygons by
grids, it is necessary to apply the subdivision methods described above. In particular, the
quad-subdivision method (section 4.1.1.1) and the Voronoi subdivision (section 4.1.1.1)
are suitable for applying a grid to the desired shape, since both have a high adaptability
to the morphology of the basic shape. Thus, it is easily possible to divide a convex
irregular polygon by a grid; however, the generated meshes of the grid have an increased
probability of inconsistency if the irregularity of the basic shape is higher. This problem
can be partially remedied by applying relaxation methods such as the Lloyd algorithm,
but complete regularity of the grid cannot be guaranteed.

Random Assignment The basic principle of the grid planning method is to place
programs connected by a certain weighted graph (figure 4.10a) in the given grid in such
a way that the most optimal arrangement of their spaces is guaranteed according to the
programs. Therefore, this is an abstract rather than a geometric partitioning of space,
since the basic shape as an initial condition has already been divided into subspaces
through the placement of the grid, and it is only a matter of assigning the programs to
the individual spaces in such a way that the weighting of their interconnection is respected
in the best possible way.

The simplest implementation of this method involves randomly assigning the programs
(figure 4.10c) to each of the spaces defined by the grid (figure 4.10b). This method can
work iteratively, since after each random assignment an evaluation result can be computed
by solving the function to be optimised. Thus, the randomisation is repeated until a
defined satisfaction threshold (figure 4.10d) or even the maximum number of iterations
has been exceeded. Obviously, this method is purely stochastic and thus represents the
least optimised method of grid planning theory.
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(a) Weighted Graph (b) Grid (c) Iteration (d) Final Placement

Figure 4.11: Iterative Grid Assignment

Iterative Assignment A more optimised approach than the random assignment method
is the iterative placement of programs10. Here, a random program is first assigned to an
equally randomly selected slot. Then the program with the greatest weight associated
with the placed element is selected. This is then positioned as close as possible to the
already placed program in the grid (figure 4.11c). The procedure is deterministic because
as long as the same basic conditions are given, such as the same programs, their connec-
tion weights and the initial program, the same program order will always be generated.
Although this method achieves more optimised results than random positioning (figure
4.11d), its deterministic, iterative structure carries a high risk of generating suboptimal
arrangements, since the algorithm does not use methods that consider a variation of all
optimisation function variables at the same time.

Random Swap The best method to solve the arrangement problem without using
established optimisation algorithms is the random swap method. Its operation is relatively
simple and starts with a random assignment (figure 4.12b) of all programs to the respective
spaces defined by the grid. Then the optimisation function is solved and the result is
stored. Then the position of two randomly chosen programs is swapped (figure 4.12c) and
the new solution of the optimisation function is compared with the stored result of the
previous constellation. If this result is an improvement with respect to the defined target
value, the current constellation is kept and the process starts over again (figure 4.12d).
These steps are repeated until the previously defined target threshold is exceeded and the
final layout is generated. This method achieves more optimised results than the previously
mentioned methods; however, finding an optimal solution is still not guaranteed and, due
to its stochastic nature, the computational and time requirements of the algorithm cannot
be predicted. Therefore, the use of state of the art optimisation methods (sections 2.3.2
and 4.1.1.3) is recommended for a concrete application of the grid planning method.

4.1.1.3 Aggregation

Another method that differs significantly from the previous ones is the family of aggre-
gation methods in automatic floor plan design. A key feature of these methods is the
ability to generate floor plans of irregular shape (figure 4.13), such as balconies that ex-
tend beyond the rectangular boundary of the building’s cross-section, or courtyards that
split the floor plan by creating a void in the center of the layout. Aggregation methods do
not require predefined outlines to initiate the generative process, but rely on the formal
definition of individual spaces in advance, which are then combined into an overall plan

10Egor et al. 2020, “Computer-aided approach to public buildings floor plan generation. Magnetizing
Floor Plan Generator”.
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(a) Weighted Graph (b) Assignment (c) Swap 1 (d) Swap 2

Figure 4.12: Random Swap Grid Assignment

Figure 4.13: Aggregation Results

through various methods. Apart from the increased formal variety that this method al-
lows, the possibility of defining the formal aspects of the spaces to be placed in advance is
also a significant advantage of aggregation methods. However, due to their specific logic,
it is always necessary to evaluate a function to be optimised in order to aggregate the
spaces according to certain conditions. This means that in most practical applications of
these methods it becomes necessary to apply optimisation algorithms11. In general, the
use of such algorithms inevitably means an increased demand for computing power and
thus an increased runtime, which can lead to complications when trying to integrate this
type of automatic space planning methods into a parametric dataset generation pipeline.

Optimisation Algorithms In order to successfully perform an aggregation of the ini-
tially defined bodies, the individual space contours must be shifted on the same two-
dimensional plane in such a way that they are arranged in the most optimal manner
possible. But what does optimal mean and how can it be evaluated? Since rational math-
ematical methods are involved, it is essential to create an evaluation scale in order to be
able to compare one generated layout with another in terms of its degree of optimisation.
In other words, it is necessary to establish a universal optimisation evaluation formula
that assigns a value to each individual layout which must be maximised or minimised in

11Nisztuk and P. Myszkowski 2019, “Tool for evolutionary aided architectural design. Hybrid Evolu-
tionary Algorithm applied to Multi-Objective Automated Floor Plan Generation”.
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order to achieve an optimum in the design evaluation.

This in itself can be a great challenge, as some of the criteria are highly subjective,
purely architectural and extremely variable both locally and over time. This difficulty
in defining an optimal design in architecture is the core problem of automatic floor plan
generation12. However, since the present experiment is not concerned with the generation
of individually optimised plans, but rather with the generation of the broadest possible
architectural dataset, it is possible to include mainly objective design criteria as variables
in the function to be optimised. Specifically, this means that the formula evaluates how
close the individual rooms are to each other, but without overlapping, since unwanted
gaps in an architectural floor plan are just as much a design flaw as an overlap of defined
rooms. Furthermore, weighted graphs, which formulate the desired local and topological
relationships between spaces as a formula to be optimised, can be used to evaluate the
implementation of programmatic requirements in the final design. The parameters to be
varied are thus represented by the two-dimensional coordinates of each space in the func-
tion, and the evaluation of the layout is solved by computing the weighted or unweighted
graph.

In order to find the optimum of the formula defined in this way, optimisation algorithms
and methods are applied, which exist in a great variety13 in mathematical, physical and
computer science contexts. Among the better known methods for the successful optimisa-
tion of multivariable non-linear functions are the evolutionary algorithms14, which, based
on the natural model, rely on concepts such as populations, natural selection, crossover
and mutation. Or the Simulated Annealing Algorithm, which, as a probabilistic method,
also provides strategies to avoid local maxima by continuously reducing the probability
weighting to find a global maximum of the function to be optimised. Of course, machine
learning methods such as reinforcement learning can also be used for function optimisa-
tion.

Agent Based A slightly different approach to the definition of a function to be globally
optimised is the establishment of independently acting agents. Each of the predefined spa-
tial elements (figure 4.14a) is given a certain autonomy as well as an evaluation capacity,
so that the individual agents can perform different local transformations (figure 4.14b)
on a two-dimensional level without deforming the space and find their optimised position
in the overall layout by solving an optimisation function corresponding to the individual
variables. Possible transformations include variation of the X and Y coordinates of the
shape-defining points and rotation of the whole space to match the rotation of another
body by calculating their degree of alignment.

Physics Solver Furthermore, the optimisation formula can also follow physical laws,
so that the problems to be solved can be defined and calculated as physical constraints.
In the concrete application for the arrangement of defined spatial bodies to an optimal
floor plan layout, this means that the weighting of the individual graph edges of the
topological graph, which represents the relationship of the individual spaces to each other,

12Nisztuk and P. B. Myszkowski 2019, “Hybrid evolutionary algorithm applied to automated floor
plan generation”.

13Pena et al. 2021, “Artificial intelligence applied to conceptual design. A review of its use in archi-
tecture”.

14Caetano, Luís Santos, and Leitao 2020, “Computational design in architecture: Defining parametric,
generative, and algorithmic design”; Grzesiak-Kope, Strug, and lusarczyk 2021, “Evolutionary methods
in house floor plan design”.
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(a) Initial Position (b) Iteration (c) Final Layout

Figure 4.14: Agent Based Aggregation

(a) Initial Position (b) Final Layout I (c) Final Layout II

Figure 4.15: Spring Force Aggregation

is simulated by physical spring forces corresponding to the weighting of the edges (figure
4.15). The individual spaces in this physical simulation are defined as solid bodies, which
are therefore not penetrable and whose motion is limited to two dimensions. To add some
variety to the generation process, the deterministic nature of such a simulation needs to be
complemented by randomness. This is achieved by arbitrarily positioning the individual
rooms in two-dimensional space as the starting position of the simulation or regulating
the strength and intensity of the simulated forces.

Refinement Strategies The different aggregation strategies share similar methodolog-
ical advantages and disadvantages. As mentioned above, the arrangement of the individ-
ual subbodies, by virtue of their formal definition in advance, allows for a high degree of
design diversity and a relatively accurate representation of architectural design practice.
However, the fundamental drawbacks of this logic should also be noted. Due to the neces-
sary application of optimisation algorithms or force simulation in the case of the physical
solver method, any aggregation strategy requires a large number of iterative, relatively
complex calculations, which are reflected in a high computing power requirement and
consequently in a considerable time consumption.

However, the most serious drawback of such methods is the lack of a possibility to guar-
antee a gapless generation of the final floor plan. Since all methods consider the distance
function as part of the formulas to be optimised, the distances will tend towards zero, but
without a certainty of reaching exactly zero. This makes the application of gap-removal
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Figure 4.16: Shape Packing Algorithm

algorithms after the generation process inevitable. A slightly modified version of the
shape-packing algorithms15 (figure 4.16) can be applied here, which consists of moving
the individual spaces in such a way that these gaps are reduced. However, this is only a
minimisation of the individual gaps and not a complete resolution of them.

In a final step, it is therefore common to assign the individual gaps to the areas of
the different rooms in a random or regularised manner. This allows for the complete
elimination of free spaces, but has the consequence that the morphology of the spaces no
longer exactly matches the previously defined shape, and thus problems such as lack of
orthogonality may arise.

4.1.1.4 Shape Grammar

In contrast to subdivision or aggregation methods, the so-called shape grammar16 (section
2.2.3), which, by defining generic geometric or topological rules, can generate a large
number of different design layouts that always follow the same rules. In the shape-
grammar approach, the initial element can be a single room or the floor plan to be
subdivided, providing a greater variety of starting conditions than the previously described
methods.

Since the rules of this method can be geometric transformations, the positioning of new
shapes or even the generation of new shapes by intersecting given bodies, both subdivision
and aggregation processes can take place within the framework of shape grammar. It
thus represents a promising methodology for the automatic generation of floor plans17.
However, it can be observed that its application in architectural practice is limited to
a few project prototypes and has not found a place in everyday design. The reason for
this could be the high complexity of its structure, since a clear, precise and unambiguous
formulation of the different rules requires a fundamental understanding of basic geometric
operations and patterns. Therefore, no meaningful application of shape grammar could
be found in this research, as scientific or documentary sources on this method are rare
and of limited quality and depth.

The various implementations of shape grammar processing tools all require a digital com-
ponent that translates the formulated rules into machine processes, the so-called inter-
preter, which is thus an essential component of the method. There are several widely
differing implementations of this form grammar interpreter, and relatively little insight

15Jabi, Grochal, and Richardson 2013, “The potential of evolutionary methods in architectural design”.
16Hong and Economou 2022, “Five criteria for shape grammar interpreters”.
17Ruiz-Montiel et al. 2013, “Design with shape grammars and reinforcement learning”.
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into its function, making it difficult to use legitimately.

However, a renewed interest in shape grammar methods in recent years shows promise
in new interpreter implementations18 which, in addition to the basic geometric rules, can
potentially respect topological relations and thus certain programmatic requirements of
the designer.

4.2 Parametric Framework
The advantages and drawbacks of the individual methods and algorithms were compared
using various criteria in order to make a final selection of the methods to be integrated
into the synthetic dataset generation process. It was decided to use a modified recursive
subdivision and a Voronoi-based subdivision due to their comparatively low complexity
and computational requirements. Furthermore, an intermediate method of the two algo-
rithms mentioned above is used, where the layout generated by the recursive subdivision
is used as input for a Voronoi diagram subdivision19, so that the centers of the existing
spaces become the Voronoi seed points. During the research process it was not possible to
find aggregation methods that did not exceed the computational and thus the temporal
capacities. For the same reasons, it was not possible to implement a reliable method
based on shape grammar rules.

Now that the three methods belonging to the family of division algorithms had been
selected, the data required for the correct execution of the algorithms could be clearly
defined. First, a basic geometric shape was needed to represent the outline of the floor
plan to be divided. The convex hull method for generating irregular polygons and an
algebraic method for generating randomly sized rectangles and squares were combined
with a method for generating slightly deformed rectangles in an outline generation method.
Since the goal is to automatically generate as diverse a dataset as possible, the individual
outline morphologies were assigned different probabilities of being selected as the initial
shape generation method for the current generation step. In addition, the dimensions of
the rectangles and squares, the placement of the convex hull points and the deformation
of the sides of the rectangles were carefully given a certain degree of randomness, but
without running the risk of taking architecturally unrealistic forms, such as very low
aspect ratios of the rectangles or very sharp angles.

Another important input to the floor plan generation methods was the pre-specification
of the size ranges of the respective rooms in relation to the total number of rooms selected
in the current step of the generation process (section B.1.1). Thus, by randomly selecting
items from this list, the generation algorithm was allowed to obtain information about
the program of desired rooms and their respective maximum and minimum sizes (figure
4.17a). The number of rooms to be placed is determined by the total area of the arbitrary
initial shape (figure 4.17c) and is equally communicated to the generation algorithm.

One challenge was to create an iterative subdivision strategy that would allow the walls
to be placed in such a way that, in the final layout, the individual rooms would have
their exact percentage size corresponding to the generated outline. To achieve this, it was
first necessary to create binary trees (figure 4.17b), each of which contained the desired
size percentage of the parent rooms as child leaves. A downhill simplex algorithm was

18Muslimin 2023, “Experience Grammar: Creative Space Planning with Generative Graph and Shape
for Early Design Stage”.

19Balzer and Deussen 2005, “Voronoi treemaps”.
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(a) Amount and Room Sizes (b) Constructed Binary Tree (c) Area of Outline

Figure 4.17: Binary Tree Computation with Percentages

(a) First Iteration (b) Second Iteration (c) Third Iteration

Figure 4.18: Space Division by Percentages

then used to optimise the placement of the cutting planes and the weighting of each
Voronoi cell so that the percentage subdivision (figure 4.18) specified by the binary tree
was maintained as closely as possible.

The final step in the geometry generation process was the transformation of the previously
purely two-dimensional apartment floor plans into three-dimensional cell elements by
topological operations through the extrusion of the individual surface elements along the
Z axis, in order to generate a three-dimensional BIM model. This whole process was
implemented in the programming language Python and was essentially enabled by the
use of certain libraries such as TopologicPy, NumPy20, SciPy21 and PyVoro22.

A particularly common method of parametric geometry generation in architecture is the
use of visual scripting languages (figure 4.19), which allow direct visualisation of the
results of the individual substeps of a parametric generation pipeline and are thus more
intuitive to use than abstract programming languages. In this thesis a large amount of
experimentation has been done in the visual scripting interface Sverchok23. This is an
add-on written in Python for the 3D manipulation software Blender24. It quickly became
apparent that such an interface has strong advantages during the experimental phase, but

20Harris et al. 2020, “Array programming with NumPy”.
21Virtanen et al. 2020, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
22Rycroft 2007, “Multiscale modeling in granular flow”.
23Nortikin 2013, Sverchok.
24Community 2018, Blender - a 3D modelling and rendering package.
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Figure 4.19: Visual Scripting Language

Figure 4.20: Structure of the Framework

is not suitable for the generation of large datasets due to a high memory load and a lower
portability as well as stability. Therefore, a pure Python implementation was preferred
for the final generation. An overview of the whole dataset generation pipeline is shown
in figure 4.20.

4.3 Architectural Rules
Throughout the construction of the parametric structure, a great deal of attention has
been paid to the constant verification and guarantee of the architectural feasibility of
each floor plan, since the ambition was to create a dataset that claims to reflect, to
a certain extent, the state of architectural reality. The first architecturally regulated
instance consisted in defining the various architectural programs, such as living room,
bathroom, bedroom, toilet and utility rooms, and assigning them to the corresponding
apartment types (table B.1 and table B.2). For example, a ten-room apartment has four
bedrooms, a living room with a kitchen and two bathrooms, a toilet and two utility rooms.
A three-room flat, on the other hand, only has a living room with a kitchen, a bedroom
and a bathroom. This list was then used to determine the maximum and minimum room
sizes for each individual apartment constellation and room.

In addition, architectural control functions were implemented in the process of generating
the apartment outline to be subdivided, which made it possible to eliminate unrealistic
or particularly atypical plan morphologies in advance. These functions are also used to
control the maximum and minimum size of the total area of the residential object to be
generated. Here the values 27.5m2 have been set as the minimum acceptable size and
136.5m2 as the maximum acceptable size. The minimum acceptable aspect ratio of these
plans was set to 0.7. For the non-orthogonal plans, a topological compactness measure is
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(a) Low Aspect Ratio (b) Sharp Angles (c) Good layout

Figure 4.21: Layout Evaluation

applied to make an appropriate selection.

The next architectural control instance is represented by a function that analyses the
generated apartment plan in terms of architectural criteria and decides whether it is an
acceptable result (figure 4.21c) or whether the generation process needs to be repeated
for this iteration. For example, this function verifies whether there are exterior or interior
walls in the design that are unrealistically short in relation to the size of the apartment,
or whether there are rooms whose degree of compactness is below an acceptable value,
namely too long or too deformed (figure 4.21a and 4.21b). If, despite the implemented
optimisation function, a floor plan generated per iteration produces rooms that are too
small or too large in relation to the other rooms or even the size of the apartment,
these plans are equally classified as architecturally unacceptable and sorted out. This
architectural control, both before and after the application of the algorithms, makes it
therefore possible to synthetically generate BIM models that represent the architectural
reality in the best possible way.

4.4 Post-Processing
The three-dimensional apartment models, which constitute the final result of the previous
steps, consist of rooms with their respective programs and their arrangement in an apart-
ment constellation. However, in order to be able to speak of true BIM models, important
architectural elements are missing, such as doors, which represent the topological connec-
tion between the individual rooms, and also windows, which represent the connection to
the surrounding medium. These elements can be summarised under the term apertures
and are represented and stored in the geometry engine used as subsurfaces associated
with their respective walls. In order to be able to generate them automatically, certain
topological tools have to be applied so that a logical placement of the individual elements
becomes possible.

Firstly, in order to place the door elements between individual rooms, a graph object is
created which connects the individual rooms in such a way that all topologically adjacent
rooms are connected by edges (figure 4.22a). The vertices of this network represent the
individual spaces. Once this graph has been determined, a Minimum spanning tree of the
respective network can be computed, which represents the subgraph of the original graph
connecting all vertices without forming any cycles (figure 4.22b). Furthermore, this tree
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(a) Delaunay Triangulation (b) MST Computation (c) Door Placement

Figure 4.22: Door Generation Process

Figure 4.23: Layout Variation Process

is computed in such a way that the sum of its edge weights is as small as possible.

The next step is to relate this graph to the basic geometry by topologically identifying
the walls that connect two spaces in the Minimum spanning tree. Finally, each of the
wall objects found in this way is assigned a door aperture in order to create a more
architecturally realistic three-dimensional model (figure 4.22).

Once the doors have been placed, the window aperture generation can begin. First,
however, to provide greater variety in the dataset, each generated apartment model is
duplicated and rotated along the Z-axis in 90 degree increments to create four new models
that differ only in their orientation. This allows the same apartment structure to be
stored in the training dataset with an orientation in all four cardinal directions. Once
this duplication and rotation operation is complete, four different window arrangements
are generated for each rotated apartment model, which are then stored as final geometries
in the dataset (figure 4.23).

The method of generating the individual window apertures is relatively simple, as it is
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basically a matter of randomly calculating the glazing percentages per wall. Since this
is the preparation of models for an energy simulation, the shape of the windows is not
critical; only their orientation and size play a significant role in the energy efficiency
calculation. Similarly, each exterior wall is given a probability of not containing a window
aperture in order to remain faithful to architectural reality, since of course not every
exterior wall of a building necessarily carries a window.

4.4.1 Information Annotation
The final geometry model has thus been successfully generated, but it still requires the
annotation of certain information in order to represent a valid BIM model and start the
next iteration. This information is fundamental to the creation of this dataset, since the
aim is the computation of knowledge graphs that contain certain dimensional, positional
and evaluative data. To understand how such information can be stored in the model,
it is necessary to look at the structure of the geometry files. In the generation pipeline
presented here, the data is stored using JavaScript Object Notation (JSON) file formats as
the frame structure (section B.3.1) and the geometry information is stored using Boundary
Representation Strings (Brep-Strings) (section B.1.2).

The JSON structure is a text-based file format which, like the IFC file format mentioned
earlier (section 2.1.2.1), allows information to be related in a hierarchical and structured
way, so that specific key-value pairs can be assigned to individual geometry elements and
stored and read in a structured way. First, the Brep string of the geometry is stored as
a value of the ’brep’ key at the top level of the structure, and an associated dictionary
element is added containing information about the type of element, the number of rooms,
the different room types and the identification number of the geometry. The individual
rooms are then also assigned dictionary elements by referencing selectors containing infor-
mation about the element type, the total area in m2, the respective program of the room
and the identification number of the room. This structured form of data representation
also makes it possible to store aperture elements such as doors and windows as separate
geometries, and to associate individual dictionary objects with them, containing informa-
tion about their element type, their area in m2, their orientation, and their architectural
role.

4.4.2 Energy Performance Simulation
The generated and annotated BIM model now contains information about its geometry,
topology, program and dimensions, but essential information about its energy efficiency
is still missing. To obtain this data, careful energy simulations have to be performed for
each individual apartment model. Furthermore, as the aim is to develop an automated
data generation process, these simulations need to be parameterised and integrated into
the general pipeline in order to automatically add the calculated energy-related informa-
tion to the JSON file of the BIM model. For this purpose, the Openstudio25 software
tool is integrated into the parametric framework, providing, among other functionalities,
simplified access to the EnergyPlus26 energy simulation software.

In order to carry out a thorough energy simulation in EnergyPlus, a variety of information
is required, presented in different file formats. First, a so-called EnergyPlus Weather

25Guglielmetti, Macumber, and Long 2011, “OpenStudio: an open source integrated analysis plat-
form”.

26Crawley et al. 2001, “EnergyPlus: creating a new-generation building energy simulation program”.
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Figure 4.24: Energy Simulation Process

Format (EPW) file is required, which provides general, historical and detailed information
about the climatic conditions of the chosen environment for the simulation. A design
day file is also required, which provides information about the specific American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) design conditions.
However, the most important component of the energy simulation is the creation of a
OpenStudio Model, stored in a human readable text format called OSM. In the case of
this work, this is a partial simulation model that contains basic information about the
materials and composition of each element of the residential model (section B.1.3), as well
as individually created operating and loading schedules that comply with the ASHRAE
standards. These schedules provide a variety of different information for each individual
room program, namely the number of people over time, the technical equipment of the
room, the heat emitting light sources and much more.

Finally, all these simulation conditions are merged with the generated BIM models and
their stored information to initiate the energy simulations. The result of this simulation
is presented in a common database form, Structured Query Language (SQL), and can be
easily and accurately queried. This now allows energy efficiency information to be added
to the original BIM model. Many different energy simulation values can be included,
providing information on a variety of different parameters and performances27. However,
in this work the initial focus was on the total value of energy consumption per area in
MJ/m2, which was then automatically added to each of the BIM models individually.
The described energy simulation process is shown in figure 4.24.

4.4.3 Data Mapping
Although the individual BIM models thus generated are now complete, the stored in-
formation still needs to be partially processed and manipulated to produce a qualitative
dataset. Each room and window element already carries numerical values about their
respective programs, dimensions and orientations, corresponding to the cardinal points,
but these must be converted into distinguishable classes, due to the way graph machine
learning methods work. For this purpose, 91 classes are created, which describe the type

27Aksin and Selçuk 2021, “Use of Simulation Techniques and Optimization Tools for Daylight, Energy
and Thermal Performance: The case of office module (s) in different climates”.
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Figure 4.25: Final Layouts with Corresponding Graphs

of window or the respective program of the rooms, a relative size ranging from XXS to
XXL and the respective cardinal direction of the windows from north to northwest in
clockwise direction (table B.9). The cardinal direction and the type description are al-
ready available in the saved format, but the relative size calculation requires an additional
step.

In order to classify the individual elements into the seven relative size categories, the
quantiles of the total representative size information of all generated geometries must be
calculated (section B.3.2). This means that, for example, a living room classified as XL
is relatively large compared to the average living room size generated by the algorithm
and controlled by the architectural function. It is also necessary to calculate relative
energy classes per apartment layout based on energy consumption values. This is similarly
done by considering the full range of simulated energy values and dividing them into the
desired number of classes, five in the case of this experiment, by quantiles representing
the minimum and maximum values of each energy class (section B.3.3).

This means that, after successful execution of the data mapping process, the dictionary
objects of the individual rooms and windows have now been extended by a ’label’ key,
which carries a category from 0 to 91 as a value and describes the essential relative
information of the individual element, such as: window - medium - south-east or bathroom
- extra small.

4.4.4 Graph Retrieval
The basis for generating synthetic graph datasets is thus complete and functional; the
only thing missing is the automatic translation from the geometric information model to
the topological knowledge graph (figure 4.25). To achieve this as smoothly as possible,
the capabilities of the Python library TopologicPy were used, as it offers the possibility
to generate different topological graphs based on geometric objects and to automatically
assign information to each node and edge.

The particularity of the generated graphs is that the individual nodes not only represent
the individual spaces and their topological relationship, but also, starting from the indi-
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vidual spaces, edges are drawn to the window apertures associated with the spaces. This
means that the resulting knowledge graph objects represent a topological description of
the room constellation and window arrangement for the entire apartment. Furthermore,
the topological graph generation method allows an automated and regularised informa-
tion transfer between the dictionary objects of the geometry and the elements of the
graph. Thus, the individual nodes receive the previously generated label keys with the
corresponding categories of the individual rooms and windows (table B.5). Similarly, the
individual graph objects receive general dictionaries, which in this case contain the site
energy consumption per surface value in MJ/m2 and the respective energy class as well
as an individual reference number (table B.4).

The complete knowledge graph objects are then stored as binary objects using the Python
Deep Graph Library (DGL)28 to build the final dataset.

4.5 Outcome

4.5.1 Results
Through the described construction of the generation pipeline, it was possible to generate
a large dataset of 40 000 synthetic housing graphs in a relatively short time. Key aspects
such as the selection of the best geometry partitioning methods, the construction of the
parametric framework, the architectural control function, and the information retrieval
and annotation were satisfactorily handled and allowed a broad insight into the respective
tools and algorithms. An essential requirement of the dataset was the morphological
and architectural versatility of the individual BIM models, which was made possible by
the application of different partitioning methods, namely Voronoi diagram, optimised
recursive subdivision and the combination of both.

The final dataset consists of two complementary parts, which are stored separately. The
first dataset represents the totality of the generated housing geometries including the
generated apertures and the stored information about the individual elements (figure
4.26 and section B.3.1). The second part consists of the corresponding knowledge graphs
of the individual apartment geometries, which contain essential information such as the
energy efficiency and topology of the individual apartment layouts (figure 4.27 and tables
B.4, B.5 and B.6).

Several methods were used to verify the quality of the generated dataset. Firstly, an
arbitrary visualisation of the geometries and corresponding graphs was performed, with
a focus on controlling for unwanted regularities. This revealed a high variance in the
layout design, indicating a satisfactory result. However, due to the large amount of data
involved, a statistical analysis of the datapoints and associated information was required.

Accordingly, the correlations of the three variables: opening area in m2, total surface in m2

and energy consumption in MJ/m2 were first plotted in order to detect any unexpected
patterns or relationships (figure 4.31). This and the analysis of the correlations between
the energy consumption in MJ/m2, the id number as ∈ N and the total surface in m2

(figure 4.32) showed a satisfactory distribution of the individual information variables.
Some logical relationships could also be verified for the legitimacy of the dataset, such
as the linear relationship between total surface and total window opening area, or the

28M. Wang et al. 2019, “Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
Neural Networks”.
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increased energy consumption for larger apartments.

The distribution of the values for total surface (figure 4.28), energy consumption (figure
4.29) and total window opening area (figure 4.30) was also examined to confirm the vari-
ance of the dataset. A satisfactory distribution of the total surface was found within the
defined maximum and minimum values, which was likewise the case for the distribution
of the total window opening area. The distribution of energy consumption values showed
a concentration around the value of 660 MJ/m2 with a relatively strong increase on the
left side of the peak. Whereas the decrease on the right side of the graph shows a much
less steep gradient and extends up to the values at 1100 MJ/m2. Thus indicating that
the energy consumption values in this dataset are non-symmetrically distributed.

4.5.2 Conclusion
In this thesis, the primary reason for the creation of the graph dataset is for its use in
machine learning. However, the generation pipeline provides a basis for automatic floor
plan generation that can also be used in the context of optimised floor plan generation
processes. In this case, however, a modification of the described processes is necessary,
as the ambition is then to generate an optimal design solution and not a search for the
greatest possible variance in the design.

The whole generation workflow implemented in Python shows a generally satisfactory
harmony of the different stages. However, some could benefit from more customised logic
and functionality. For example, for maintenance reasons, it would be advisable to replace
the Voronoi generation with SciPy’s spatial Voronoi instead of the Python library PyVoro.
It would also be advantageous to speed up certain aggregation methods by parallelising
processes, thus allowing their integration into the pipeline. In fact, the variance of the
dataset would benefit from such integration, as in the current implementation there is no
way to generate floor plans with a central patio or external balconies.
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Figure 4.26: Geometry Dataset
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Figure 4.27: Corresponding Graph Dataset
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Figure 4.28: Distribution of Surface Value

Figure 4.29: Distribution of Energy Consumption Value

Figure 4.30: Distribution of Opening Area Value
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Figure 4.31: Relation Between Opening Area, Surface and Energy Consumption

Figure 4.32: Relation Between Energy Consumption, Layout ID and Surface
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Chapter 5

Graph Machine Learning

The second part of the methodology deals with the construction, training and evaluation
of different graph machine learning models. The focus is on two special variants of graph
deep learning. First, a model is developed that is trained by graph classification methods
and thus represents a classification model. More specifically, this model is trained on
the labelled graph objects and their energy class to be able to classify new, unseen and
annotated graph structures into one of the five energy classes. The second model is also
based on graph-wide prediction, but uses continuous energy consumption values instead
of classes, and is therefore a regression model. In other words, for any architecture-based
graph structure, this regression model allows the site energy consumption per surface in
MJ/m2 of the underlying architectural objects to be predicted as accurately as possible.

The two models created belong to the family of Deep Graph Convolutional Neural Net-
works (DGCNNs)1 and, as the name suggests, are based on a convolutional neural network
structure. Due to their special architecture, they allow the use of graphical datasets as
a basis for the supervised learning process instead of conventional pictorial or tabular
training datasets. Since DGCNNs are composed of several layers, each of which per-
forms convolutional operations followed by activation functions and pooling operations,
information can be reduced and abstracted so that classes or values corresponding to the
entire graph can be predicted2. Another key feature of DGCNNs is their ability to handle
graphs of variable size and structure. This means that these networks are able to process
graphs with different numbers of nodes and edges without changing the network structure
or training method, which has proven to be an essential feature in their application.

The entire training, testing and validation process, as well as the evaluation of the results,
was implemented in Python, as was the geometric generation pipeline, and is essentially
based on several different Python libraries such as TopologicPy, DGL, PyTorch3, Scikit-
learn4, NumPy and Pandas5. The DGL library is by no means the only Python library
that allows the creation and training of DGCNNs; However, it was preferred over other
libraries, such as PyTorch Geometric, because DGL is an excellently documented library
that can be easily combined with the TopologicPy toolkit. In addition, DGL offers inter-
esting functions such as the mean node calculation or a wide range of sampling methods.

1Velikovi 2023, “Everything is Connected: Graph Neural Networks”.
2M. Wang et al. 2019, “Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph

Neural Networks”.
3Paszke et al. 2019, “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
4Pedregosa et al. 2011, “Scikit-learn: Machine Learning in Python”.
5McKinney 2010, “Data Structures for Statistical Computing in Python”.
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5.1 Structure
In order to successfully train the respective DGCNN models, several steps must be taken,
beginning with the data preparation. With the help of the DGL library, a DGL.Dataset
object is created, which allows the individual stored and annotated graph objects to be
read in, converted into adjacency matrices and the respective training information to be
stored at graph level. The thus created graph dataset object is perfectly suitable for
continuing the training preparation.

The next step is to divide the dataset for the holdout training method into a training,
validation and test dataset, with the test and validation datasets each representing ten
percent of the total. The resulting validation dataset is stored and used only after success-
ful training. Because of the large amount of data involved, it is also necessary to create a
so-called data loader, which allows the graphs to be loaded in a bundled form per learning
step. This is based on the creation of so-called graph batches. A graph batch consists of
several graph objects that are combined into a larger bundled graph without changing
their structure or information. In this sense, a graph batch is a supergraph object to the
individual subgraphs from the dataset. The data loader function also needs information
about how to read the graphs from the dataset. In the present project, a subset random
sampler was chosen to allow a random composition of the graph batches.

At this point it is advisable to verify the balance of the created dataset, which in concrete
application means comparing the number of energy classes occurring in the dataset. If
these percentages are not sufficiently balanced, methods such as over- or undersampling
should be used to rebalance the dataset.

The data preparation and reading is now complete, and all that remains to be done is to
define the model and its individual structure, the hyperparameters that influence training,
and the choice of optimisation methods. Then the training cycle can begin, where epoch
by epoch the weights of each layer of the model are optimised by backpropagation to
improve the prediction accuracy on the training data. Finally, the trained model is tested
on the test dataset to evaluate its prediction accuracy.

This framework is the same for both classification and regression models. The two meth-
ods differ only in their individual structure, input data and the way loss is calculated
during the training process.

The graph classification model (figure 5.1) is based on the energy classes contained in
the dataset at the graph level, ranging from zero to four. Its layers consist of the input
layer with a dimension corresponding to the number of node labels, a variable number of
graph convolutional layers with different dimensions and activation functions, a pooling
layer used to reduce the size of the graph and at the same time the information loss, and
finally the output layer corresponding to the dimension of the number of classes to be
predicted and providing the final prediction about the class membership of the graph.
The loss calculation for the classification model can be computed by either cross-entropy
or negative log-likelihood.

The structure of the regression model (figure 5.2) is similar to that of the classifier;
however, the final layer is a linear layer, which is one-dimensional because the prediction
of the regression model is, by definition, almost always a single value. Another difference
is the loss calculation, which is performed in the regression model by calculating the Mean
Squared Error.
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Figure 5.1: Classification Model Structure
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Figure 5.2: Regression Model Structure
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Epochs Batch Size Learning Rate Pooling Hidden Layer Layer Type Optimiser Loss Function
300 32 0.01 Average 32 TagConv Adam MSE

Table 5.1: Regressor Hyperparameter

Figure 5.3: Regressor Hyperparameter Tuning

5.2 Hyperparameter
Hyperparameters are parameters that control the behaviour of the model, but are usually
not chosen by the model itself. Instead, they have to be set manually by the developer.
In this work, the main hyperparameters are the learning rate, the number and dimen-
sion of hidden layers, the number of epochs, the batch size, the pooling strategy, the
loss function, the optimisation method and the convolution layer type. Since there are
many different and interdependent parameters, certain methods such as random search
or Bayesian optimisation can be used to find the optimal hyperparameters. This process
is called hyperparameter tuning in computer science.

The basic principle is to perform the training process with the parameters determined
by the automatic tuning algorithms and then test the performance of the model on the
validation dataset. This process is repeated until the most optimal combination of each
hyperparameter is found. The results of the random search tuning as well as the Bayesian
optimisation method (figure 5.3 and 5.4) show that for the classification model and the
regression model, the hyperparameters shown in the tables 5.1 and 5.2 lead to an optimi-
sation of the prediction and classification accuracy.

5.3 Evaluation
There are several evaluation metrics that can be used to evaluate the trained DGCNN
models. The most common are accuracy (table 5.3), precision, recall, f1-score and Mean
Squared Error or Root Mean Squared Error (table 5.4), although only the last two can
be used as a strategy for evaluating regressors. These metrics measure different aspects
of model performance, such as the overall precision of the model, or even the ability to
distinguish positive examples from negative ones in the case of classifications.

To ensure that the evaluation of the DGCNN model is robust and reliable, a 10-fold

Epochs Batch Size Learning Rate Pooling Hidden Layer Layer Type Optimiser Loss Function
50 64 0.01 Average 16 | 16 GraphConv Adam NLL

Table 5.2: Classifier Hyperparameter
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Figure 5.4: Classifier Hyperparameter Tuning

cross-validation is preferable to simple holdout training. In this method, the dataset is
divided into 10 subsets and the model is trained and tested accordingly 10 times, using
each subset once as a test dataset. The results are then averaged to obtain a robust
evaluation score of the two models.

5.3.1 Classification Metrics
Graph classification models are typically evaluated based on their accuracy in predict-
ing graph classes. To do this, graphs are divided into training and test datasets. The
training dataset is used to train the model, while the test dataset is used to evaluate the
performance of the model. The accuracy of the model is then measured by the number
of correct predictions on the test dataset. A commonly used metric for evaluating graph
classification models is the accuracy metric, which is calculated as the ratio of correct
predictions to the total number of predictions.

In addition to accuracy, other metrics can be used to evaluate the performance of graph
classification models, such as precision. This is the number of times that the model
correctly predicts that a datapoint belongs to a particular class, as measured by all the
predictions that the model has assigned to that class. It is calculated as the ratio of True
Positive predictions (TP) to the sum of TP and False Positive predictions (FP).

In addition, the recall score can be used for evaluation, which indicates how often the
model correctly predicts that a datapoint belongs to a particular class, measured against
all actual datapoints of that class. Recall is calculated as the ratio of true TP predictions
to the sum of TP and False Negative predictions (FN).

Finally, it is also common in research to calculate the f1-score of a classification model,
which is a combination of precision and recall. It indicates how well the model is both
precise and comprehensive. This score represents the harmonic mean of precision and
recall.

It is also important to note that the performance of graph classification models is highly
dependent on the quality of the data used. It is therefore necessary to carefully verify
that the training and test datasets are sufficient and representative of the application
scenario (section 4.5.1), as well as having the best possible balanced class distribution in
the dataset to avoid possible overfitting.
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5.3.2 Regression Metrics
Classification accuracy metrics such as precision, accuracy, recall and f1-score are not
appropriate for regression models because they are designed to evaluate the performance
of discrete class prediction models. In a regression problem, however, the goal is to predict
a numerical target variable given a set of input variables. Because the target variable
is continuous rather than discrete, accuracy metrics such as conventional classification
accuracy cannot be used because they are unable to measure the accuracy of predicting
continuous variables.

Instead, regression models are evaluated using metrics such as Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) to quantify the
predictive performance with respect to the actual values of the target variable. The MSE
indicates the degree of Mean Squared Error between the model’s predictions and the
actual values of the target variable. It is calculated as the mean of the squared difference
between the predictions and the actual values. The RMSE is the root of the MSE and
thus indicates how large the average absolute error is between the model’s predictions and
the actual values of the target variable. The MAE on the other hand indicates the size
of the average absolute error between the predictions of the model and the actual values
of the target variable.

5.3.3 Comparison
Finally, in order to adequately evaluate the performance of the two trained models, they
are compared with other models that have similar functionalities and their respective
prediction accuracies. Thus, the DGCNN Classifier is compared with a number of different
classification models such as the Random Forest Classifier, the Gradient Boost Classifier,
the Decision tree Classifier, K-Nearest Neighbours Classifier, Support Vector Classifier,
Logistic Regression and Multi-layer Perceptron Classifier and their respective accuracy
(figure 5.5).

The DGCNN regression model was compared with models such as Random Forest Re-
gressor, Gradient Boosting Regressor, Decision tree Regressor, K-Nearest Neighbours Re-
gressor, Support Vector Regressor, Linear Regression, Ridge Regression, Lasso Regression,
Multi-layer Perceptron Regressor and Elastic Net (figure 5.8). However, it is important
to understand that these are different machine learning approaches and therefore the
underlying data is required in different formats. This means, for example, that the afore-
mentioned comparative models were trained entirely on tabular data (section B.3.4), as
opposed to the graphical data used for the DGCNN models. This has to be considered
as an essential part of the evaluation.

5.4 Outcome

5.4.1 Machine Learning for Energy Prediction
Both classification and regression models have been trained on the synthetic graph dataset
to predict the energy performance score of an apartment. The classification models predict
the energy efficiency class of an apartment, while the regression models predict the actual
energy consumption in MJ/m2.

At this point, it is crucial to re-emphasise the advantages of the trained models. Contrary
to the common assumption that machine learning and artificial intelligence in the field of
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AEC are mostly applied to the automatic generation of optimised architectural plans, in
this experimentation the focus is purely on enabling optimised design feedback loops. In
other words, the primary application of the models takes place during the conceptual phase
of the design process, hand in hand with the architect or designer. The creative freedom
of the architect’s work is therefore in no way affected or constrained by the application
of the machine learning models, but rather provides a continuous indication of the actual
energy consumption of the current project. This allows the designer to easily test certain
decisions, such as the placement, size or orientation of a window, in terms of changes in
energy consumption, without having to continuously run costly energy simulations. More
on the concrete architectural application of the results of this research can be found in
the sections 6.5 and A.2.

5.4.2 Classification
This section provides a comprehensive performance comparison between several classifiers.
The models have been trained on information derived from the synthetic graph dataset,
allowing their respective capabilities and limitations to be assessed and evaluated in the
context of the task at hand. The use of the 10-fold cross-validation technique ensures
the generalisation of the models and the reliability of their performance metrics. In order
to compare the performance of the DGCNN classifiers, several different models have
been used, such as Logistic Regression, MLP, Support Vector, Random Forest, Gradient
Boosting, Decision tree and K-Neighbors. They were evaluated based on their mean
accuracy, which provides an overview of how well the classifiers performed on average. The
results are presented graphically in figure 5.5 and numerically in table 5.3. In addition,
a detailed analysis of the performance of the DGCNN Classifier is presented, including
a mean confusion matrix which helps to understand the classification accuracy for each
class individually.

5.4.2.1 Results

It can be seen that the DGCNN Classifier has the highest mean accuracy (0.83), followed
by the logistic regression (0.82) and the MLP Classifier (0.79). On the other hand, the
K-Neighbors Classifier has the lowest mean accuracy (0.52). The K-Neighbors Classifier
is a model that relies on local patterns in the feature space to make predictions. This
approach works well when the input data is densely packed and can be easily separated
into different classes based on these patterns. However, if the data has a more complex
structure, such as graph-derived data, this approach may not be effective. The DGCNN
Classifier is designed to work with such graphical data and can learn the underlying
features of the graph structure to make accurate classifications.

The Random Forest Classifier has a mean accuracy of 0.65, which is relatively good
compared to some of the other classification models. The Random Forest Classifier is an
ensemble learning method that relies on a collection of decision trees to make predictions.
It is known for its robustness to overfitting and its ability to handle high-dimensional data.
However, the performance of the model can be sensitive to the choice of hyperparameters,
such as the number of trees and the depth of such trees. The Gradient Boosting Classifier
has a mean accuracy of 0.61, which is slightly lower than the Random Forest Classifier.
This model is also an ensemble learning method that uses a collection of weak learners
to make predictions. It is known for its ability to handle high-dimensional data and its
ability to predict the shape of complex non-linear functions that describe the relationship
between the features and the target variable. However, like the Random Forest classifier,

100



Figure 5.5: 10-Fold Cross Validation Accuracy for Different Classifiers

Classifier Mean Accuracy Standard Deviation
DGCNN Classifier 0.83 0.01

Logistic Regression Classifier 0.82 0.01
MLP Classifier 0.79 0.01

Support Vector Classifier 0.79 0.01
Random Forest Classifier 0.65 0.01

Gradient Boosting Classifier 0.61 0.02
Decision Tree Classifier 0.57 0.01
K-Neighbors Classifier 0.52 0.00

Table 5.3: Mean Accuracy and Standard Deviation of Different Classifiers
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the performance of the model can be sensitive to the choice of hyperparameters.

Not surprisingly, the Decision tree Classifier has a mean accuracy of 0.57, which is lower
than the Random Forest Classifier and the Gradient Boosting Classifier. This model is a
simple tree-based learning method that makes predictions based on a set of if-then rules.
It is known for its simplicity and interpretability, but it can be prone to overfitting and
may not perform well on such complex datasets.

The Support Vector Classifier has a mean accuracy of 0.79, which is relatively high in
comparison. This model is a discriminative learning method that divides the data into
different classes by slicing planes in n-dimensional space according to the data features.
Its main advantage is its ability to learn on tensors of higher dimensions and its robustness
to noisy data. The MLP Classifier has a mean accuracy of 0.79, which is similar to the
Support Vector Classifier. This model is a neural network based learning method that
uses multiple layers of interconnected nodes to learn the features of the input data. It is
also capable of learning non-linear functions that map the features to the target variable,
but the selection of hyperparameters must be well chosen.

Logistic regression has a mean accuracy of 0.82, which is surprisingly the second highest
of all the classifiers. This model is a probabilistic learning method that models the
probability of the target variable given the input data. It is known for its simplicity and
interpretability and can perform well on a wide range of datasets. It is possible that the
linear nature of the logistic regression model is beneficial for this particular task, allowing
the classifier to be less prone to overfitting.

Figure 5.6 shows the mean confusion matrix for the DGCNN Classifier. The confusion
matrix represents the distribution of predicted and true labels for each class. The x-
axis and y-axis of the matrix represent the predicted and true labels respectively. The
colour intensity of each cell in the matrix represents the mean of the confusion matrix
for the corresponding true and predicted labels. The values within each cell indicate the
mean of the 10-fold cross-validation confusion matrices with the corresponding standard
deviation value. Based on the mean and standard deviation values, it appears that some
classes are easier to predict than others using the DGCNN Classifier. For example, the
diagonal values for classes 0 and 4 are relatively high, indicating that these classes are
easier to predict accurately. In contrast, the off-diagonal values for classes 1, 2 and 3 are
likewise relatively high, indicating that these classes are harder to predict accurately. The
standard deviation values also show some variability in the confusion matrix, with the
highest levels of variance observed in the off-diagonal values for classes 1 and 2.

5.4.2.2 Conclusion

The comprehensive performance analysis presented in this section illustrates the compar-
ative performance of several models predicting different energy consumption classes for
unseen apartment layouts through 10-fold cross-validation. The results clearly indicate
that the DGCNN classifier outperforms the other models, with the highest mean accuracy
of 0.83. This superior performance can be attributed to its ability to handle the complex
structure of graph-derived data, effectively learning the underlying features of the node
relationships for accurate classifications.

The mean confusion matrix for the DGCNN Classifier further reveals that some classes
are easier to predict than others. This highlights the importance of considering class
distribution and potential class imbalances when evaluating model performance.
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Figure 5.6: Mean Confusion Matrix for DGCNN Classifier
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Overall, these results emphasise the crucial role of choosing the right classifier architec-
ture depending on the nature of the dataset and the problem at hand. For the task
described, which involves complex graphical data structures, more sophisticated models
such as the DGCNN Classifier are expected to offer superior performance. However, sim-
plicity and interpretability should not be overlooked, as demonstrated by the relatively
high performance of the logistic regression model. Future work could focus on optimis-
ing the hyperparameters of these models, further improving their performance on the
dataset, and exploring other sophisticated models designed to handle complex graphical
data structures.

5.4.3 Regression
The aim of this section is to compare the performance of a set of regression models
trained on tabular data derived from the information contained in the graph dataset.
The dataset consists of energy consumption values in MJ/m2, which serve as labels
for the regression task. Using the Root Mean Squared Error (RMSE) as an evaluation
metric, it was possible to measure the respective performance of the models. The results
are presented graphically in figure 5.8 and numerically in table 5.4. These results show
the best performing regressor, with details of the respective standard deviation across
multiple model outputs.

5.4.3.1 Results

A scatter plot of the actual and predicted values of the DGCNN regression model is
shown in figure 5.7, where the x-axis describes the actual energy consumption values of
the apartments in the test dataset in MJ/m2 and the y-axis shows the corresponding
predictions made by the trained DGCNN model. In this plot, the scatter points should
be as close as possible to the diagonal, as their orthogonal distance to this line represents
the mean error of each prediction. This plot shows that higher energy consumption
values are associated with a slightly increased RMSE, which translates into an elevated
inaccuracy for these values. On the other hand it can be seen that from about 900 MJ/m2

the number of datapoints representing these values becomes sparser, which was already
visible in figure 4.29.

When analysing the results, the MLP Regressor stands out as the best performing model
with a RMSE of 18.82. This demonstrates that the MLP Regressor was the most accurate
in predicting energy consumption values. The MLP Regressor, a type of neural network,
exploits its ability to learn complex, non-linear relationships, which is likely to have
contributed to its high performance in this task.

The DGCNN Regressor closely followed the MLP Regressor, with a slightly higher RMSE
of 19.33 MJ/m2. Given that DGCNN is inherently capable of handling complex struc-
tured data, such as graph data, it is not surprising that it performed well in this task.
The high performance of DGCNN and MLP suggests that the underlying patterns present
in the dataset may be complex, requiring sophisticated models to accurately predict the
energy consumption values.

Linear Regression and the Ridge Regressor follow with a significant lead of about 15 units,
yielding an RMSE of 34.52. As these two regressors are linear models, the difference in
performance compared to MLP and DGCNN suggests that the relationship between the
features and the energy consumption value is likely to be non-linear.
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Figure 5.7: Actual and Predicted Values of the Regression Model

Figure 5.8: 10-Fold Cross Validation RMSE for Different Regressors
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Regressor Mean RMSE Standard Deviation
MLP Regressor 18.82 0.53

DGCNN Regressor 19.33 0.63
Linear Regression 34.52 0.55
Ridge Regressor 34.52 0.55

Gradient Boosting Regressor 41.85 0.76
Lasso Regressor 43.29 0.76

Random Forest Regressor 46.73 1.17
Support Vector Regressor 47.41 1.13
Decision Tree Regressor 49.53 1.40
K-Neighbors Regressor 52.14 1.34
Elastic Net Regressor 70.18 0.96

Table 5.4: Mean RMSE and Standard Deviation of Different Regressors

Interestingly, the performance of more complex models such as the Random Forest Re-
gressor and Gradient Boosting Regressor is suboptimal, with RMSEs of 46.73 and 41.85
respectively. These regressors typically perform well on many datasets due to their ability
to handle high-dimensional data and capture non-linear relationships. However, in this
case they underperform compared to simpler models such as Linear Regression and Ridge,
suggesting that the features in the dataset may not be well suited to tree-based models.

Support Vector Regressor, Decision Tree Regressor and K-Neighbors Regressor have
RMSEs higher than 47, indicating their poor performance in this task. The low score
of these models may be due to their difficulty in dealing with the high complexity of the
dataset and the distribution of the target variable.

Finally, the Elastic Net Regressor has the highest RMSE of 70.18, reflecting the worst
performance of all the models. This could be due to the model’s l1 regularisation, which,
while useful in preventing overfitting, may have led to underfitting in this case.

5.4.3.2 Conclusion

Despite the good accuracy of the graph model regressor, the fact that the MLP Regressor
slightly outperforms the DGCNN Regressor provides an important finding. It implies
that, contrary to what was initially assumed, graph representation does not necessarily
provide a substantial advantage over simple tabular representation in the case of this
particular energy prediction task.

There are several factors that could contribute to this. It may be that the complexity
of the graph-structured data does not provide additional benefits in predicting energy
consumption values, especially compared to a well-designed tabular representation. The
energy consumption of apartments may be primarily influenced by characteristics that
are easily captured in a tabular format, such as apartment size, number of rooms or loca-
tion, while the added topological information of the graph structure may not contribute
significant predictive value.

In conclusion, the choice of data representation and machine learning model was found
to have a significant impact on performance, highlighting the need for task-specific and
data-driven model selection. While the DGCNN Classifier excelled in the classification
task, reinforcing the value of graph data for this particular problem, the MLP Regressor
outperformed the DGCNN Regressor in the regression task, suggesting that tabular data

106



may be equally or even more effective in data-driven energy performance prediction.
This requires a detailed understanding of the benefits and limitations of different data
representations and models according to the specific characteristics of the dataset and the
nature of the prediction task. Future research can build on these findings by exploring
other sophisticated models and data transformations to take advantage of the relational
information contained in graphical architecture datasets.
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Chapter 6

Conclusion and Future Perspectives

The results of this study demonstrate the potential of applying topological knowledge
graphs and graph machine learning to the architectural design process. The synthetic
dataset generation process, which included the collection of space partitioning algorithms,
allowed the creation of an unbiased architectural dataset with significant variability. Both
the classification and regression models achieved high accuracy in terms of energy pre-
diction, indicating the potential for a useful implementation of the described methods in
the relevant industry. However, when compared to other machine learning models, the
application of a simple neural network (MLP) trained on tabular rather than graphical
data showed comparably good results. This suggests that the application of topological
knowledge graphs in the context of energy simulation is not particularly advantageous
compared to simple tabular data. Nevertheless, further research is needed before the use-
fulness of graphical topological information in the field of energy consumption prediction
can be determined.

Furthermore, the importance of graph theory in architectural design is demonstrated,
questioning the current role and application of building simulations in architecture. Al-
though the proposed application in this study is currently a proof of concept rather than
a complete tool proposal, it demonstrates the possibility of improving the architectural
workflow and integrating architectural graph representation into design, as well as op-
timising simulation and design interaction. The implications of this study are broad,
ranging from the advancement of graph-theoretic applications in architectural research
to the enhancement of creative, artistic and organisational aspects of the architectural
profession.

However, there are limitations to the proposed methods, including the lack of complex
architectural models with concave spaces or patios in the dataset and the high degree of
generalisation in the energy simulations. The choice of partitioning algorithm was limiting
but necessary due to resource limitations that made the application of complex iterative
optimisation methods more restrictive. Lack of access to an unbiased large graph dataset,
limited machine power, time constraints and the difficulty of establishing connections and
communication with the AEC were also limiting factors.

Despite these limitations, this study opens new avenues for research in the field of archi-
tecture and demonstrates the potential of topological information coupled with knowledge
graphs in the context of automated architectural simulation and analysis methods. With
further development and optimisation, this approach has the potential to find a valuable
application in architectural design, allowing for more efficient building practices.
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By presenting and discussing the various simulation and topological analysis methods, this
thesis provides a basis for further research into graphical machine learning methods in
the architectural context. Furthermore, the detailed documentation of the methodology,
the software used, and the public availability of all data and code (section 6.1) allows for
subsequent research based on this contribution.

6.1 Summary of Contribution
One of the main contributions of this thesis is the development of a comprehensive frame-
work for the synthetic generation of a complete graph dataset that accurately represents
real-world building designs. This involved the gathering of topological analysis methods
which were then used to extract knowledge graph objects from the corresponding apart-
ment designs. By exploring and comparing different algorithms, this research identified
the most appropriate methods for creating diverse apartment designs with their topologi-
cal organisation represented by graph networks. This synthetic dataset was then enriched
with energy performance scores and values, allowing it to be used to train different ma-
chine learning algorithms to predict and classify the energy consumption of buildings
based on their graph representations.

A detailed introduction and presentation of the concepts of graph theory, topology and
simulation provides insights into the respective fields and their connection to architecture.
Essential methods of each field are explained and described, such as the different graphical
analysis methods, topological analysis concepts in concrete architectural applications,
graph machine learning algorithms, and the most relevant simulation techniques. This
summary thus provides a knowledge base for further research in the areas described.

The synthetic generation of the graph dataset involved several crucial steps, including
the creation of a parametric generation pipeline and the integration of the identified
space partitioning algorithms into the parametric framework for automatic floor plan
generation. The defined rules and architectural requirements for the properties of each
object in the dataset were also carefully considered and a post-processing phase was
conducted to ensure the accuracy and reliability of the dataset. This synthetic dataset
can thus serve as a useful tool for training graph machine learning algorithms to predict
various parameters based on chosen architectural simulation metrics.

Another significant contribution of this thesis is the use of graph machine learning to
predict the energy performance of buildings based on their graph representations. The
trained regressor and classifier were able to accurately predict the energy performance of
unseen apartment designs based on their topology, demonstrating the potential of inte-
grating such methods into the architectural design process. This research has also shown
the importance of feedback in the early design stages to optimise building performance,
and that graphical information could be a beneficial alternative to traditional unstruc-
tured data for analytical applications.

This research has thus contributed to the field of architectural and conceptual design by
demonstrating the integration of theoretical concepts such as graph theory, topology, syn-
thetic data generation, automatic floor planning and graph machine learning in the design
process. The generated dataset and the corresponding code will be made available under
an open source licence, thus being open for contribution while allowing any kind of use
and modification. The dataset is hosted on Google’s data science platform kaggle (https:
//kaggle.com/datasets/rabanohlhoff/architecture-graph-dataset) and the code
for the parametric framework as well as the machine learning procedure with the trained

109

https://kaggle.com/datasets/rabanohlhoff/architecture-graph-dataset
https://kaggle.com/datasets/rabanohlhoff/architecture-graph-dataset


models is hosted on Microsoft’s code sharing platform GitHub (https://github.com/
Sinasta/thesis).

6.2 Reasearch Questions
This work brings to light the findings and advances that can be achieved by integrating
complex computational and mathematical methods into architectural design practices. In
doing so, it opens up a range of new possibilities and tools for architectural design, but
also presents new implications and challenges that need to be addressed. The following
section proposes answers to the four key research questions that arise from the interplay
between architecture, graph theory, topology, machine learning and synthetic dataset cre-
ation. These questions, previously announced in section 1.4, explore the potential benefits
and challenges of these integrations, ultimately aiming to provide a holistic understanding
of the opportunities and complexities they bring to the field of architecture. The ensu-
ing discussion is intended to provide valuable insights into these research topics and to
encourage further exploration and innovation in these areas.

6.2.1 Graph and Topology in Architecture
The integration of knowledge graphs and topological methods in architectural practice
holds immense potential1. Graphs provide a powerful tool for representing relational
information between architectural entities, while topology can be used to understand
and manipulate the spatial as well as non-spatial relationships between these entities.
The meaningful application of these tools in project design can allow architects to derive
insights from abstract relationships and potentially influence their design decisions in
novel ways. However, such integration also presents challenges. Architects may need to
acquire new skills and familiarise themselves with complex mathematical concepts, and
a thoughtful approach to translating abstract relationships into concrete design decisions
is required.

Successful integration into the everyday design process would bring significant program-
matic, organisational and conceptual benefits to the architect, adding an essential tool
to the conventional creative process. The ability to graphically represent abstract infor-
mation, such as relational or hierarchical relationships between architectural elements,
provides the basis for quantifying and analysing previously intangible design intentions.

6.2.2 Feedback in Early Design Stages
Feedback in the early stages of design can be invaluable in enhancing creativity and
coherence between initial concepts and more detailed elaborations in later stages2. By
receiving indicative feedback early on, architects can take informed design decisions and
ensure that their initial designs are well aligned with the requirements of later project
stages. However, integrating such feedback can be challenging due to the ambiguous and
exploratory nature of early design stages. Machine learning models can be leveraged to
provide immediate, data-driven feedback to architects, helping them to iteratively improve
their designs and optimise the development process.

1Alymani, Mujica, et al. 2023, “Classifying building and ground relationships using unsupervised
graph-level representation learning”.

2Paterson et al. 2013, “Real-time Environmental Feedback at the Early Design Stages”.

110

https://github.com/Sinasta/thesis
https://github.com/Sinasta/thesis


Figure 6.1: Design for Manufacturing Principle

In this work, the integration of energy performance feedback was explored using schematic
apartment floor plans and their respective window positions. In a concrete application,
this would allow the designer to receive immediate feedback on the energy profile of the
drawn architectural object. It would also allow a comparative study of design perfor-
mance by simply moving individual apertures or changing the dimensions and topology
of the volumes without the need for complex simulations. This method of instant design
feedback can be extended to any simulation parameter, making difficult to understand
characteristics of the design object clear and assessable.

As illustrated in the design for manufacturing principle (figure 6.1), it becomes increas-
ingly costly to change the design as time progresses during the design process, while the
impact of the change steadily decreases. This shows that the best time to make a de-
sign change is as early as possible in the project. Since simulation and other feedback
operations in the traditional architecture process occur mostly in the later stages of the
project, such changes are only possible on a small scale or in a very costly framework3.
This clearly demonstrates the essential need for early design feedback operations such as
those demonstrated in this work.

6.2.3 Machine Learning in Architecture
Machine learning models can play an important role in architectural design4. In both prac-
tice and academic research, the application of deep learning methods can help to abstract
geometric or topological information from complex architectural data in order to provide
detailed insights. Trained models can therefore serve as valuable tools for design feedback
iteration, transforming data into actionable recommendations for design improvement5.
In particular, the present study found that Deep Graph Convolutional Neural Networks,
which accept annotated graphs as input, are well suited to this task. However, a signifi-
cant degree of technical skill and understanding of these models is required to adapt the

3As, Pal, and Basu 2018, “Artificial intelligence in architecture: Generating conceptual design via
deep learning”.

4Kiavarz et al. 2021, “Room-based energy demand classification of BIM data using graph supervised
learning.”

5Paterson et al. 2013, “Real-time Environmental Feedback at the Early Design Stages”.
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training process in order to use them effectively in the architectural context. In this re-
gard, important challenges related to bias in training data and interpretability of machine
learning models need to be carefully considered and addressed.

The abstraction of BIM models to topological knowledge graphs proved to be an advanta-
geous method for dataset creation and the subsequent training process of graph machine
learning algorithms. By a sophisticated selection of the node and graph labels of the
respective datasets, promising results can be achieved in the architectural application.

6.2.4 Synthetic Architecture Datasets
The synthetic creation of architectural graph datasets is an innovative approach that can
abstract complex relational information. Automatic floor plan generation can provide a
rich source of diverse and adaptable design data6, providing a valuable resource for ma-
chine learning models. This approach can help mitigate origin bias by providing a broader
and more varied representation of architectural designs than a dataset based on the analy-
sis of a limited number of architecture plans or styles. However, the automatic generation
of such datasets also presents challenges. Ensuring the quality, realism and variability of
the generated floor plans requires careful tuning of the generation algorithm. Evaluating
the creative diversity and adaptability offered by synthetic datasets also poses method-
ological challenges, requiring metrics that capture both the quantitative and qualitative
characteristics of architectural designs.

The dataset generation pipeline developed in this thesis provides an extensible frame-
work for dataset synthesis. The technical decomposition into architectural control rules
and extensible generation algorithms is thus ideally suited for adaptation to the specific
requirements of the graph datasets to be generated.

6.3 Learned lessons
Through the development of an end-to-end framework for the synthetic generation of a
complete graph dataset and the use of machine learning algorithms to predict the energy
performance of buildings based on their graph representations, this thesis has uncovered
several important lessons for the field of Computer Aided Design. These lessons have
the potential to impact architectural research and design practice in terms of topological
analysis methods through the application of graph machine learning models. In this
section, these learned lessons will be explored in more detail, including the accuracy of
the machine learning models, the importance of graphical information and retrieval, and
the potential of DGCNNs in architectural design optimisation. These learned lessons
provide valuable insights for researchers, architects and designers looking to integrate
topological and graph-theoretic analysis methods into their research or design processes.

• By applying topological and graphical analysis methods to architecture, mathemat-
ical concepts can be used to automatically explore and evaluate possible design
proposals, providing the designer with a useful tool in the creative process.

• Graph machine learning algorithms can achieve good accuracy for both classification
and regression tasks when predicting the energy performance of buildings based on
their graph representations. This demonstrates the potential of using graph machine

6Carta 2021, “Self-Organizing Floor Plans”.
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learning algorithms as a tool for optimising building designs and improving their
energy efficiency. By accurately predicting the energy performance of buildings, it
becomes possible to make more informed decisions and to design more efficient and
sustainable building layouts.

• The comparable accuracy of the Deep Graph Convolutional Neural Network and
Multi-layer Perceptron neural network developed in this work indicates that the
role of the topological relationships between individual spaces and their respective
apertures do not have a significant impact on the energy performance of individual
apartments.

• However, the relation between the annotated graph information, specifically node
labels, and energy performance has been shown to be of critical importance. By
carefully selecting and defining node labels in the graph representations of building
designs, machine learning algorithms can predict their energy performance with high
accuracy. This highlights the importance of selecting meaningful and informative
node labels when generating graph datasets for architectural design.

• The ability to retrieve the graphical representation of the BIM model throughout
all phases of the project allows architects and designers to continuously verify and
optimise their building designs based on different graph analysis methods. This
highlights the significance of integrating graph theory tools into the traditional
BIM workflow to optimise the design and organisation of building topologies.

6.4 Future Perspective
Looking forward, this thesis has identified several important open issues and implications
for the future of the use of graph representations and machine learning algorithms in
architectural design. Addressing these open issues and considering their implications will
be crucial for architectural research in this area in order to fully exploit the potential of
such tools in order to produce more optimised and efficient building designs.

An important open issue is the identification of other values beyond energy performance
that can be used as labels for graphs and predictions. These could include other building
performance parameters such as light simulation, fire simulation, evacuation simulation
or spatial syntax evaluation. In addition, it will be important to expand the dataset to
include more features, such as different locations, materials, heights and contexts, to fully
explore the potential of graph machine learning algorithms in the architectural design
context.

Further research into model optimisation is another important open question. While this
work has demonstrated the use of Deep Graph Convolutional Neural Network, further
improvements in the structure of the model could be made. Another open issue is the
implementation of a continuous back and forth between the graph representation and
the BIM model, in particular using the IFC file format7, which is hierarchical and can
therefore be queried in a structured manner.

An important implication of this research is that machine learning algorithms should not
be used primarily as recommendation tools, but rather as useful feedback indicators for
architects and designers. In addition, the use of these tools should not be limited to

7Isaac, Sadeghpour, and Navon 2013, “Analyzing building information using graph theory”.
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the architectural side, but should be extended to the engineering side of building design.
Furthermore, it is important to note that the synthetic dataset used in this research should
be adapted or enhanced for specific use cases to ensure its effectiveness.

To address these open issues and implications, several recommendations can be made.
Adapting the synthetic dataset generation algorithms to represent more real-world va-
riety in terms of geometry, adding variations for composite materials such as walls and
windows, and simulating variations for different locations are important steps. Exploring
the benefits of the IFC file format for graph retrieval8 is also recommended, as it could pro-
vide a simple and potentially widely adaptable method for integrating topological graph
analysis into the conventional design workflow.

6.5 Added Value for Architects
The development and application of a comprehensive framework for the synthetic genera-
tion of a complete graph dataset and the use of machine learning algorithms to predict the
simulated performance of buildings based on their graph representations provides signifi-
cant added value to architects and designers. By integrating machine learning algorithms
and graph representations into their design processes, architects can create more efficient
and optimised building designs. The use of machine learning algorithms to predict the
energy performance of buildings, as explored in this work, can help architects and design-
ers in making more educated choices and optimise their building designs to reduce energy
consumption and increase energy efficiency. This can lead to significant cost savings over
the lifecycle of the building, as well as improved environmental performance.

In addition, the use of graph representations can provide architects and designers with a
powerful tool for abstracting and visualising the complex relationships and dependencies
within building designs. In fact, graph representations can be used to visualise and
analyse building designs at different scales and to identify patterns and relationships that
are not immediately apparent in conventional design workflows. This can help architects
to better understand the implications of their design decisions and to make choices about
the materials, systems and technologies used in their building designs.

The use of machine learning algorithms and graph representations can also provide ar-
chitects with a valuable tool for early design optimisation. By using predictive models to
analyse different design options, designers can quickly and efficiently evaluate the potential
performance of different three-dimensional layout proposals and modifications. This can
help reduce the time and cost associated with traditional feedback methods and ensure
that the final design is optimised in terms of the chosen performance parameter.

6.6 Concluding Remarks
This thesis has demonstrated the potential of applying topological graphs in the context
of architectural design. Throughout the process, from conceptual clarifications to the syn-
thetic generation of a graph dataset to the training of machine learning models, essential
foundations have been laid for research into the application of graphical-topological anal-
ysis methods to architectural objects. Several implications, open questions, perspectives
and benefits have been identified in the course of this research.

8Nahar 2017, “Applying graph theory concepts for analyzing BIM models based on IFC standards”.
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Although a concrete implementation regarding the energy consumption of individual
apartments was developed in the contribution section, this work is primarily a proof
of concept to lay the foundations for further research in this field. In this sense, the
individual stages of the experiment can now be further refined by applying the concepts
explained, and subsequently compared and evaluated using the established evaluation
metrics. This can be done both at the level of data generation, by varying the geomet-
ric methods, simulation strategies or information annotation, and at the level of model
training, by modifying and combining different Graph Neural Networks.

The potential of graph theory and topology to represent abstract relational information in
architectural designs has been established, while at the same time highlighting the need
for their meaningful interpretation in the context of project design. While these methods
open up new ways of conceptualising and analysing architectural design9, they also pose
the challenge of deciphering the abstract representations and making them practically
relevant.

The early integration of indicative simulation variables in the design process is a way
to promote creativity and coherence in architectural projects. However, it requires the
development of effective methods to manage and optimise this process, a task that has
been explored and discussed in this thesis.

Machine learning, a field that has seen tremendous growth and advancement in recent
years, has shown immense potential in the field of architecture. As has been explored,
machine learning models can not only provide nuanced feedback in design iterations, but
can also effectively process complex inputs such as annotated graphs. The exploration
of DGCNN as a novel model for graph-based machine learning has presented an inno-
vative approach to architectural design. However, the task of selecting the right model,
fine-tuning the hyperparameters, and interpreting the outputs remains a complex and
challenging process.

While the creation of synthetic datasets offers a promising solution to address origin bias
and increase creative diversity in architectural design, it comes with its own challenges.
From ensuring the validity of the generated data to dealing with the complexities of
automatic floor plan generation, many facets of this promising yet challenging field have
been traversed.

The interdisciplinary approach of this work, between mathematical and computer science
methods and those of conceptual architecture, aims to enrich the creative design process
with valuable tools, thus bridging the gap between the individual disciplines. Since ef-
fective progress would hardly be possible without collaboration and public availability
of research and results, an essential ambition of this work is the publication of all code
sources as well as data and information (section 6.1).

9Boguslawski et al. 2016, “Two-graph building interior representation for emergency response appli-
cations”; Nauata, Chang, et al. 2020, “House-gan: Relational generative adversarial networks for graph-
constrained house layout generation”; Z. Wang et al. 2021, “Room Type Classification for Semantic
Enrichment of Building Information Modeling Using Graph Neural Networks”.
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Appendix A

Additional Content

A.1 Further Readings
The state of the art (chapter 3) listed the main literature that provided fundamental
information for the development of the experiments described in this study. However, the
preliminary resource analysis revealed a much larger number of publications, research and
experiments on the topics covered. For reasons of space and structure, those that did not
contribute significantly to the development of the experiment, but still contained valuable
and relevant information, were collected and summarised in the further reading section.

Graph Theory in Architecture
West et al. 2001, Introduction to graph theory is an in-depth study of graph
theory with additional emphasis on the detailed explanation of essential graph-theoretic
algorithms and special cases such as perfect graphs, matroids, random graphs and eigen-
values.

Napong 2004, “The graph geometry for architectural planning” documents
the creation of graphical networks to analyse the geometric properties of architectural or
urban structures. The minimum path graph is computed based on the distance between
each node to provide designers with insight into the geometric potential of the object
through analysis of optimal node centrality and edge passage capacity.

Vandromme et al. 2009, An Interactive System Based on Semantic Graphs
demonstrates the calculation of adjacency graphs based on apartment and studio layouts
using different methods to evaluate the subgraphs generated by Bayesian causal methods.
It synthesises a set of optimal floor plan layout graph variants. This work demonstrates
the potential of adjacency graphs in the context of creative design practices at a conceptual
level.

Lakshmi, Madhumathi, and Sindhuja 2017, “Graph theory and architecture”
presents different ways of applying graph-based analysis approaches at both architectural
and urban levels. Concepts such as pseudo-graphs, disconnected graphs, degree and eccen-
tricity based graphs, semi-graphs and cluster analysis are discussed.

125



Nahar 2017, “Applying graph theory concepts for analyzing BIM models based
on IFC standards” describes and develops a potential workflow from a IFC BIM model
to two informative and distinct graph networks. The meta-graph aims to describe the rela-
tional information of the model, while the object-graph captures the physical relationships.
The methodology described aims to manage, visualise and analyse the information within
the BIM model.

Abualdenien and Borrmann 2021, “PBG: A parametric building graph cap-
turing and transferring detailing patterns of building models” focuses on the
application of so-called parametric building graphs, which capture constructive AEC de-
tail patterns and automatically integrate them into new projects through graph rewriting
systems, provided a pattern match is given. The application of graph theory in this work
is thus at a physically constructive level, involving detailed investigation, where the nodes
and edges of the graph represent the respective elements and connections of the detail
patterns.

Topology and Space Syntax
Alexander 1977, A pattern language: towns, buildings, construction is a
fundamental book of architectural theory which identifies a multitude of so-called patterns,
each of which describes a specific problem and its solution. Together, these patterns form
a pattern language that encompasses not only constructive but also social, psychological,
political and urban aspects.

Kantor 2005, “A tale of bridges: topology and architecture” focuses on the
mathematical concept of topology and makes it tangible through examples. It clarifies es-
sential features such as the topological understanding of space as opposed to the geometric
one.

Varoudis and Psarra 2014, “Beyond two dimensions: architecture through
three dimensional visibility graph analysis” takes a closer look at the Visibility
Graph Analysis (VGA) method of space syntax. It then develops a method for extending
VGA to allow the integration of three-dimensional information into the analysis. This
allows for a comprehensive understanding of spatial configuration in two and three di-
mensions.

J. H. Lee, Ostwald, and H. Lee 2017, “Measuring the spatial and social char-
acteristics of the architectural plans of aged care facilities” explores the rela-
tionship between spatial configurations and cultural and social backgrounds using aged
care facilities as an example. Several facilities from different countries and cultures are
compared using isovist and Visibility Graph Analysis to draw conclusions about their
differences and influences.

Lojanica and Dragisic 2018, “The topological principles in the contemporary
architectural design process” looks at contemporary architecture through the lens of
mathematical topology. Concepts of continuous deformation of geometric forms, such as
deformability, openness and continuity, are illustrated with examples and their significance
for architectural design is discussed.
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Wardhana et al. 2019, “A spatial reasoning framework based on non-manifold
topology” explores the benefits of non-manifold topologies for spatial reasoning and
presents their implementation in the ’Topologic’ library. An example of automatic path
finding within a topology model derived from a BIM model and its dual graphs is docu-
mented.

Bielski et al. 2020, “Topological Queries and Analysis of School Buildings
Based on Building Information Modeling (BIM) Using Parametric Design
Tools and Visual Programming to Develop New Building Typologies” studies
the topology of different school buildings by analysing adjacency, accessibility, depth and
flow. This information is transformed into graph objects, together with semantic data
about the buildings and spatial functions, and analysed using machine learning methods
to identify specific patterns and draw architectural conclusions.

Decisionmaking and Feedback-Tools
Bao et al. 2013, “Generating and exploring good building layouts” addresses
the problem of defining a good building layout, which presents a significant challenge in
the field of CAD. This task is achieved by defining specific evaluation metrics that allow
users to make design decisions within the local shape space based on a portal graph.

Das et al. 2016, “Space plan generator: Rapid generation and evaluation of
floor plan design options to inform decision making” explores the automated
generation of design variants based on architectural requirements, similar to the previously
mentioned publications. Different layouts are calculated using an evolutionary algorithm-
based floor plan generator, taking into account certain user-defined constraints such as
site outline, number of floors, total area and adjacencies.

Thurow, Langenhan, and Petzold 2016, “Assisting early architectural planning
using a geometry-based graph search” creates a searchable architectural database
using graph-based semantic building fingerprints to enable designers to explore multiple
similar typologies in the early stages of the design process.

Nagy et al. 2017, “Project discover: An application of generative design for
architectural space planning” includes the automated generation of layout variants
based on user input. What makes it different, however, is the evaluation matrix developed,
which evaluates a variety of architectural characteristics of the generated plans. A multi-
objective genetic algorithm is then used to filter out the best optimised variant.

Eisenstadt, Langenhan, and K.-D. Althoff 2019, “Generation of Floor Plan
Variations with Convolutional Neural Networks and Case-based Reasoning–
An Approach for Unsupervised Adaptation of Room Configurations within
a Framework for Support of Early Conceptual Design.” This publication doc-
uments a methodology for generating numerous possible design variations that could
represent the current design using graphically programmable information and a gener-
ative adversarial network. The motivation for this research was the common need for
extensive formal research during the initial design phases and the time intensity that this
task brings.
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Shekhawat, Upasani, et al. 2020, “GPLAN: Computer-Generated Dimen-
sioned Floorplans for given Adjacencies” explains the developed software ’GPLAN ’,
which is able to generate a series of rectangular floor plans according to the chosen param-
eters by specifying a desired programmatic adjacency graph. In addition, the research pre-
sented allows the generation of orthogonal floor plans, which allows for greater diversity.
The second part of the paper discusses another method for the automatic dimensioning
of drawn floor plans.

Son and Hyun 2021, “A framework for multivariate data based floor plan re-
trieval and generation” is primarily concerned with the generation and quantification
evaluation of multivariate design data from floor plans. In this context, an automated
generation pipeline for the application of the evaluation method was also developed. Key
assessment parameters include the number and function of individual rooms, perimeter,
room shape, adjacency and connectivity. However, other elements such as walls and doors
and their respective positions and dimensions are missing from the evaluation method.

Optimisation in Early Design-Stages
Jabi, Grochal, and Richardson 2013, “The potential of evolutionary methods
in architectural design” explores the beneficial application of evolutionary algorithms
in conjunction with shape-packing algorithms in the design process. These automatic
optimisation methods in two-dimensional space have proven their effectiveness in examples
such as shading facade patterns and urban residential layouts. The key benefits of this
method are the automation and optimisation of multiple design parameters that influence
each other.

Boon et al. 2015, “Optimizing spatial adjacencies using evolutionary paramet-
ric tools: using grasshopper and galapagos to analyze, visualize, and improve
complex architectural programming” experiments with the application of evolu-
tionary parametric optimisation methods to improve architectural layouts by defining
desired parameters using a visual scripting language and genetic solver extensions. How-
ever, the chosen fitness criteria still pose a problem due to the lack of a uniform evaluation
syntax.

Grzesiak-Kope, Strug, and lusarczyk 2021, “Evolutionary methods in house
floor plan design” shows a novel approach to define optimal solutions. In fact, fit-
ness criteria can take different forms in architectural optimisation applications. In this
example, the genotypes represent two-dimensional vectors analogous to wall junctions in
geometric space. Thus, within a defined framework, the placement of walls corresponding
to desired room sizes and total area can be automatically adjusted to achieve the most
optimal layout.

Performance-Based Design
Ibrahim 2011, “Computing Architectural Layout” conducts an experiment on
several architectural pavilions and their topological shapes to optimise the use of space.
Graphical parameters, such as the topological relationship of each space, are defined as an
optimisation function to generate an adapted morphology. The formal freedom given to
the structure in this experiment is interesting; however, it makes the developed method
less applicable in the specific domain of residential architecture.
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Aksin and Selçuk 2021, “Use of Simulation Techniques and Optimization Tools
for Daylight, Energy and Thermal Performance: The case of office module (s)
in different climates” shows an example of performance optimisation through the def-
inition of multiple evaluation metrics. The application of conventional genetic algorithms
has attempted to optimise daylighting and thermal performance while minimising energy
consumption. However, the continuous simulation of individual building morphologies
proves to be resource and time intensive, making it unsuitable as a supporting tool in the
initial design phase.

Impact of Machine Learning
Belém, Luis Santos, and Leitão 2019, “On the Impact of Machine Learning:
Architecture without Architects” examines the role of machine learning in its re-
spective application areas and then explores its adaptation in the AEC industry. Possible
applications in different architectural areas such as conceptualisation, algorithmisation,
modelling and optimisation tasks are discussed and their significance for the future of the
industry is explained and evaluated.

Pena et al. 2021, “Artificial intelligence applied to conceptual design. A review
of its use in architecture” represents a collection of projects and applications of
artificial intelligence in architecture, focusing on its beneficial use in the experimental
design phase. Of interest is the emphasis on the creative capacities of trained models and
computer science algorithms, allowing the discovery of innovative and original forms.

Design and Optimisation Applications
Harding and Derix 2011, “Associative spatial networks in architectural de-
sign: Artificial cognition of space using neural networks with spectral graph
theory” explores the organisation of an exhibition space on a two-dimensional level
using self-organising maps and a growing neural network. The neural network is used to
optimally distribute changing input representing exhibiting individuals within the archi-
tectural space. Experimental approaches to three-dimensional spatial organisation using
Voronoi diagram algorithms are also included.

Newton 2019, “Deep generative learning for the generation and analysis of
architectural plans with small datasets” investigates the use of GANs for the syn-
thesis of architectural floor plans. Of note is the specific learning of certain architectural
styles, such as that of the architect Le Corbusier, and the small size of the dataset, which
is addressed by noise augmentation methods. However, this involves the generation of
pixel-based plans, which have their own limitations.

Sebestyen and Tyc 2020, “Machine Learning Methods in Energy Simulations
for Architects and Designers” presents a smaller-scale experiment using neural net-
works to predict sunlight hours and radiation levels based on the formal aspects of a de-
signed building facade. The entire pipeline has been implemented using a visual scripting
language, providing a simplified understanding of the framework for non-expert designers.

Eisenstadt, K.-D. Althoff, and Langenhan 2020, “Student Graduation Projects
in the Context of Framework for AI-Based Support of Early Conceptual
Phases in Architecture.” delves through a compilation of work into another area
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of intelligent spatial configuration in the early stages of architectural design. It presents
various extensions to the existing methodology, focusing on concepts such as explicable AI,
game theory, natural language processing and generation. The common thread of these
research efforts is the interaction with the designer and the usability of the developed
model.

Alammar, Jabi, and Lannon 2021, “Predicting incident solar radiation on
buildings envelope using machine learning” documents the training of two differ-
ent machine learning methods, Artificial Neural Networks (ANNs) and decision trees, on
a synthetic parametrically generated dataset for solar radiation of office buildings. The
labelled data from the environmental simulation tool suite Ladybug served as the training
base, allowing a comparison of the accuracy of the two trained machine learning models.
The decision tree classification model showed higher accuracy, indicating the categorical
nature of the data.

Liu 2021, “Topological Networks Using a Sequential Method Space Structure
Simplifcation for Interactive Design” introduces a generative design method that
abstracts complex topological data into spatial layouts, enabling the organisation and
structuring of spatial networks according to user requirements. The research explores
the application of Recurrent Neural Networks in the generative design process through
experimentation.

Graph Machine Learning in Architecture
As, Pal, and Basu 2018, “Artificial intelligence in architecture: Generating
conceptual design via deep learning” describes the process of encoding different
buildings as knowledge graphs, and using graph machine learning methods to identify
specific patterns and subgraphs. These learned structures and distinctive building blocks
of the designs were then used as input to modified GANs. Using graph-based neural
networks, the tool generated high-quality organisational graph objects based on desired
criteria such as livability and sleepability.

Hu et al. 2020, “Graph2plan: Learning floorplan generation from layout
graphs” analyses the generation of new floor plans with optimised programs based
on user input about the desired layout graphs and building boundaries. Graph2plan, a
trained graph neural network, has learned the adjacency information of the graphs in rela-
tion to their outlines. This tool provides suggestions for the internal functional structure
during the design process.

Nauata, Chang, et al. 2020, “House-gan: Relational generative adversarial net-
works for graph-constrained house layout generation”, “House-gan++: Gen-
erative adversarial layout refinement network towards intelligent computa-
tional agent for professional architects” document the use of actual architectural
floor plans and their generated layout graphs describing room adjacency and function to
create a GAN capable of generating plausible room configurations based on new bubble
diagrams. The machine learning model, houseGAN, was later extended to handle non-
rectangular room shapes, doors, entrances and functional graphs instead of adjacency
graphs using a new vector-based dataset.
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Sanchez-Lengeling et al. 2021, “A gentle introduction to graph neural net-
works” aims to illustrate the basic concepts and main application areas of deep learn-
ing methods with graphical data through visual examples. It presents essential concepts
related to different graphical information and the different challenges related to graph
components in machine learning. Finally, it visualises and explains terminology such as
pooling, message passing, edge and global representations, sampling and batching.

Velikovi 2023, “Everything is Connected: Graph Neural Networks” empha-
sises the importance of graph structures in our natural environment in terms of physical
and biological phenomena, as well as cultural and social elements such as language, text,
information and social networks. The authors also explain the basic principles of Graph
Neural Networks and their application in various classification and regression tasks.

Ali 2023, “Architectural Pipeline: An experiment into the role of topological
graphs in the early stages of architectural design in the era of machine learn-
ing” describes and documents the creation of a pipeline for generating graph datasets,
starting with pixel-based actual architectural floor plans. Using spatial recognition meth-
ods similar to Kalervo et al. 2019, “Cubicasa5k: A dataset and an improved multi-task
model for floorplan image analysis”, the plans were vectorised to extract topological graphs
based on the robust attributed adjacency graph extraction method described in Chen and
Stouffs 2022, “Robust Attributed Adjacency Graph Extraction Using Floor Plan Images”.

Parametric Design and Algorithms
Coates et al. 2005, “Generating architectural spatial configurations. Two ap-
proaches using Voronoi tessellations and particle systems” examines the use of
Voronoi diagrams and Delaunay triangulations in the context of automatic space par-
titioning. The two methods offer a number of advantages due to their flexibility and
controllability by seed points, which are evaluated in terms of spatial configuration gen-
eration. Topological concepts such as pathfinding are also investigated.

Chatzikonstantinou 2014, “A 3-dimensional architectural layout generation
procedure for optimization applications: DC-RVD” discusses and explains the
rectangular Voronoi subdivision method in an architectural context. A disadvantage of
regular Voronoi subdivision is that the resulting regions always have an irregular polygo-
nal shape. With the developed algorithm, the resulting regions retain rectangular shapes,
making it more suitable for traditional architectural applications, but it also has draw-
backs such as gaps between individual spatial elements.

Aguiar, Cardoso, et al. 2017, “Algorithmic design and analysis fusing disci-
plines” presents an algorithm that allows the generation of a twin model in parallel
with the conventional modelling process. The twin model has a simplified structure that
is well suited for analytical purposes. The parametric algorithm is implemented in a visual
scripting language that allows for continuous visualisation of the process.

Postle 2019, “On pattern languages, design patterns and evolution” introduces
a software tool capable of automatically generating three-dimensional BIM models. The
tool’s functionality is based on the optimisation of patterns defined by Alexander and their
solutions by evolutionary algorithms. It combines the language of architectural patterns
with design patterns from computer science to generate optimised architectural objects.
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Caetano, Luís Santos, and Leitao 2020, “Computational design in architecture:
Defining parametric, generative, and algorithmic design” discusses the state of
the art of computational design in the architectural context through a meta-analysis.
The study explains different terminologies and their use and clarifies key concepts and
synonyms such as parametric, generative, algorithmic, adaptive and evolutionary.

Automatic Floor Plan Generation
Lopes et al. 2010, “A constrained growth method for procedural floor plan gen-
eration” provides a method for automated space planning through a relatively simple
algorithm that simulates and generates room allocations based on user-defined functional
constraints. The growing structures resemble a combination of Voronoi diagram compu-
tation with a grid-based approach, but not exactly slicing or aggregation methods.

Shekhawat 2014, “Algorithm for constructing an optimally connected rect-
angular floor plan” presents a method for space allocation that is not significantly
different from those mentioned above. However, it introduces an element called ’extra
space’, which can take various forms such as corridors, terraces, balconies or storage
space.

Calixto and Celani 2015, “A literature review for space planning optimization
using an evolutionary algorithm approach: 1992-2014” categorises, analyses and
compares space planning algorithms supported by evolutionary algorithms developed since
the 1990s. It delves into different approaches to space partitioning, such as half plans,
K-3D trees, shape grammars, blocking, assignment and slicing trees.

Guo and B. Li 2017, “Evolutionary approach for spatial architecture layout
design enhanced by an agent-based topology finding system” studies the com-
bination of multi-agent topology search systems and evolutionary solution methods. The
algorithm belongs to the family of agent-based aggregation methods that use topological
analysis metrics as evaluation strategies.

Nisztuk and P. B. Myszkowski 2019, “Hybrid evolutionary algorithm applied
to automated floor plan generation”, “Tool for evolutionary aided architec-
tural design. Hybrid Evolutionary Algorithm applied to Multi-Objective Au-
tomated Floor Plan Generation” compares greedy-based algorithms and hybrid
evolutionary algorithms in their ability to automate space allocation and planning, and
presents an implementation of a resulting tool. User-defined optimisation parameters
include room area, location and topological connectivity.

Carta 2021, “Self-Organizing Floor Plans” presents and compares a collection of
ANNs and GANs applications in automated space planning methodologies. The meta-
analysis raises questions about the acquisition and quality of architectural datasets, as
these have a significant impact on the performance and influence of trained models.

Architectural Datasets
Fedorova et al. 2021, “Synthetic 3d data generation pipeline for geometric
deep learning in architecture” develops a generation pipeline to create a synthetic
three-dimensional architectural dataset. While datasets providing two-dimensional floor
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plan information are available in various forms, geometric deep learning tasks may require
volumetric information. During the course of these experiments, individual architectural
objects were augmented with additional information such as building components, mate-
rial textures and building classes.

Eisenstadt, Arora, Ziegler, Bielski, Langenhan, K. Althoff, et al. 2021, “Com-
parative evaluation of tensor-based data representations for deep learning
methods in architecture”, “Exploring optimal ways to represent topological
and spatial features of building designs in deep learning methods and appli-
cations for architecture” test, compare and evaluate different tensor-based encoding
methods of architectural and topological information in conjunction with deep learning
methods. The tensor formats tested include multilayer maps, textual maps and one-hot-
encoded maps, with the latter method showing the highest accuracy with 98%.

A.2 Potential Application and Usage
The scope of this work does not allow for a concrete application of the developed methods
due to time constraints. Nevertheless, a presentation of a possible application workflow is
helpful for a solid understanding of the usefulness of the models trained in the experimental
phase. In the following sections, the possible software interaction is first presented and
explained using visual examples. Then technical details of a possible implementation are
given, and finally considerations for community-based improvement and learning methods
are listed.

A.2.1 Workflow Concept
The implementation of the model-based feedback provider should be achieved through
visual representations of the predicted values that are as intuitive as possible. Therefore,
by using the API extension of the commercially available architecture software packages,
an interaction with the user interface for the visualisation of the results can be ensured
within the applied software. Thus, the application of the feedback method does not require
any adaptation on the part of the user and the need for a large number of different software
packages is avoided.

As shown in figure A.1, a small floating button is displayed in the center of the left half
of the screen, continuously indicating the predicted energy consumption in MJ/m2 and
the corresponding energy class of the current design. In addition, an intuitive colour
code can be used here, which could adopt a green-yellow-red gradient to effectively and
conveniently convey good, mediocre or poor results.

The fact that the dataset, and thus the input to the trained model, is based on graphical
information is extremely valuable at this point, as the level of detail and dimensionality
of the developed design does not pose any problem or difference in the prediction process.
The only requirement is to extract the topological information from the two dimensional
plan or three dimensional building and compute the topological graph of the design based
on this data. This can easily be done using the TopologicPy library, as long as a uniform
aperture and space designation is given. In effect, this means that the prediction of
simulation values can be performed in the background at all design stages without any
effort on the part of the user (figure A.2), thus saving considerable cost and time in design
practice.

133



(a) Feedback for 2D Floor Plan

(b) Feedback for 3D BIM Model

Figure A.1: Mock-up of Potential Implementation
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Figure A.2: Immediate Design Feedback

Figure A.3: Pop-Up Graph Showing Previous Design Variants and Performance

The key functionality of the developed method becomes apparent as soon as changes are
made to the created design. By clicking on the box displaying the results, ’save points’
can be created that store the performance of the design at that point in time. This
allows detailed comparisons to be made between design variations, whether these are
minor changes such as the size or position of a window, or major changes such as the
orientation of the building or completely different building typologies. These comparisons
are displayed in a pop-up window and visualised by graphs (figure A.3). By clicking on
the individual datapoints, it is easy to go back to a previous design, which can be useful
if the previous version was found to be more energy efficient than the current layout.

A.2.2 Technical Implementation
The presented functionality entails some prerequisites and requirements on a technical
level. First of all, the interface between the user and the machine learning model has to be
defined, since user-friendliness is an important criterion in the architectural application.
On the one hand, one could develop an independent software that builds its interface
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through libraries such as GTK and uses open source kernels such as Open CASCADE as
a geometry processor, or the development of an add-on that could be split into a software-
independent processing part and a API for the dominant architecture tools, allowing easy
integration into conventional design workflows.

As the proposed machine learning model is relatively small and therefore fast and re-
source efficient and could be distributed pre-trained, no special hardware requirements
are necessary. Furthermore, an essential part of the technical implementation would be
the development of a general design language for intuitive feedback visualisation that has
uniform semantics across all software. Last but not least, the choice between a centralised
server back-end or a decentralised local model interaction would have to be discussed.

A.2.3 Crowd Sourcing
During the research for the experiments and analyses presented in this paper, subjects
around the degree of openness and democratisation of architecture were identified that
offered a variety of interesting and pioneering ideas. The concept of open source archi-
tecture1, both in construction and in the design process, is about making the acquired
knowledge of individuals publicly available, in order to offer more inexperienced or non-
specialist individuals the opportunity and access to the respective corpus of knowledge.
The publication of the plans and rights of several projects by Pritzker prize winner Ale-
jandro Aravena or the open source design initiative OpenStructures, which makes its
designs available online free of rights, has sparked a general interest in the political-social
movement in the AEC industry.

Another concept of knowledge sharing in the field of architecture is urban mining, in
which urban areas and their buildings are understood as a kind of warehouse of building
components, and thus a database of available constructive and decorative elements can
be created and searched by anyone. This would make it theoretically possible to design
an entire project based on a list of available components, thus addressing essential issues
of today’s society such as component recycling, carbon emissions, life cycle and energy
consumption in the production of materials.

In the context of this master’s thesis, the crowdsourcing of architectural designs, for
example, could lead to a significant increase in the variety, complexity and reality of
datasets such as the developed graph dataset, as personal designs are progressively fed
in. It would be possible to increase the number and quality of datapoints in the dataset
and to improve the labelling of the data through sensor measurements. This type of data
collection through continuous sensor-based real-world measurement in an urban context
is often referred to as smart city or Internet of Things (IoT).

A.3 Open Source Software and Knowledge
The term open source software (OSS) refers to the type of software whose source code is
publicly available and published under certain permissive licences. Terms such as free soft-
ware broaden the conceptual framework to include essential notions such as the freedom
to use the program without restriction, to modify and redistribute the program as desired,
and to publish improvements. In the early days of program development, these concepts
were implicitly the norm and contributed significantly to software development. How-

1Postle 2019, “On pattern languages, design patterns and evolution”.
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ever, the diametrically opposed concept of proprietary software was introduced shortly
afterwards for economic reasons and has since become the dominant approach to soft-
ware development. As a result, various institutions such as the Open Source Initiative
(OSI) or the GNU Project were founded to protect, regulate and centralise the values and
standards of free software.

A.3.1 Benefits of Open Source
Open source and free software offer significant benefits that have widely changed research
and software development and continue to drive technological progress2. They promote
public accessibility and inclusion, enabling individuals around the world to benefit from
advanced tools. Source code transparency enhances security and encourages community
collaboration, leading to rapid innovation. The use of open source software reduces vendor
lock-in and ensures longevity. In addition, open source file standards such as IFC and
DXF in the AEC industry enable easy interoperability between different software packages
and stakeholders. The use of these concepts is also consistent with the ethical principles
of knowledge sharing and collective progress. In practice, however, large software vendors
often resist the adoption of open source standards, as demonstrated by the public letter3

addressed to Autodesk and signed by 324 influential AEC industry professionals.

A.3.2 AEC Software and Efforts
In addition to established OSS such as NumPy, SciPy, PyTorch, Scikit-learn, DGL and
Pandas, a number of libraries and software have been tested and studied in the course of
this work. In particular, simulation software corresponding to the main simulation topics
(section 2.3) was collected. Due to their accessibility, Python-based or Python API were
preferred. In the following subsections, the most important OSS related to the topics of
this thesis can be found in a categorised list.

A.3.2.1 BIM Tools

• BlenderBim is a sophisticated Building Information Model (BIM) tool that in-
tegrates with Blender and uses the ifcOpenShell library to allow efficient visu-
alisation and modification of Industry Foundation Classes (IFC) data, providing a
complete BIM workflow.

• FreeCAD is a versatile parametric 3D modelling engine that provides a BIM
Workbench. In combination with this add-on, FreeCAD becomes a proper BIM
tool, providing architectural design, modelling and analysis capabilities.

• Sverchok is a visual scripting tool for parametric modelling within Blender. While
not exclusively a AEC tool, it can be used to create rule-based geometries and
automate specific tasks in architectural projects such as performance analysis.

• TopologicPy is a library for topological operations on point sets with integrated
graph functionalities based on non-manifold elements. It can also be integrated
into sverchok’s visual programming engine and provides useful tools for graph and
geometry analysis.

2Chaillou 2022, Artificial Intelligence and Architecture: From Research to Practice.
3Ali 2023, “Architectural Pipeline: An experiment into the role of topological graphs in the early

stages of architectural design in the era of machine learning”.
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• Homemaker Add-On is a Blender add-on that simplifies architectural design by
converting spatial configurations into IFC building models through a user-friendly
approach that combines evolutionary algorithms with Christopher Alexander’s A
pattern language: towns, buildings, construction.

• Open CASCADE is a powerful 3D modelling and numerical simulation engine
that provides essential components for CAD software.

A.3.2.2 Open Formats

• IFC is a file format used to store and exchange BIM data between different soft-
ware applications. It facilitates interoperability throughout the project development
cycle.

• DXF or Drawing Exchange Format is a file format developed by Autodesk and
commonly used to exchange 2D and 3D drawings between different CAD software
applications.

• gbXML or Green Building XML is a file format that represents the environmental
characteristics of a building. Its primary use is in the simulation and analysis of the
energy performance of building designs.

A.3.2.3 Structural, Thermal and CFD Analysis

• ADA-Py is a Python library used in Finite Element Analysis (FEA). It provides
structural analysis tools that allow advanced simulations of the mechanical perfor-
mance of building designs.

• CalculiX is another FEA solver that provides various methods for structural and
thermal analysis. It can calculate complex mechanical scenarios and simulate a
variety of different material behaviours.

• Code Aster is a powerful structural and thermo-mechanical analysis software.
Developed and maintained by EDF (Electricité de France), it has found wide ap-
plication in the AEC industry.

• CFAST or Consolidated Fire and Smoke Transport is a simulation engine for fire
propagation and smoke analysis in buildings. It can be used to assess fire safety
and verify evacuation systems.

• Elmer is a multiphysics simulation software that provides different types of analysis
such as thermal, structural or electromagnetic simulations.

• FDS or Fire Dynamics Simulator is a Computational Fluid Dynamics software
used to analyse fire and smoke spread in buildings. It can help to understand fire
behaviour and develop fire safety measures.

• OpenFOAM is another CFD software package that provides a wide range of nu-
merical modelling capabilities for fluid flow and heat transfer analysis.

• OpenSEES or Open System for Earthquake Engineering Simulation offers a frame-
work for simulating the seismic behaviour and resistance of structures. It is mainly
used in earthquake analysis and research.
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A.3.2.4 Environmental Analysis

• Ladybug Tools is a collection of environmental analysis plug-ins for various 3D
modelling software. It allows architects and engineers to perform various envi-
ronmental simulations such as daylighting, solar radiation and energy analysis by
providing multiple access points.

• OpenLCA is a tool for Life Cycle Assessment (LCA) that allows users to analyse
the environmental impact of construction processes, making it a suitable feedback
tool for sustainable design and decision making.

• CarboLifeCalc is software that focuses on calculating the carbon footprint of
building materials and projects. It helps to quantify the environmental impact
of construction practices and enables environmentally conscious design choices.

• Radiance is a suite of lighting simulation and ray tracing tools. It is most com-
monly used for daylight analysis and shadow simulation in architectural space.

• Vi-Suite is an add-on for Blender, originally designed for contextual and performa-
tive building analysis. Over time it has expanded to include dynamic functionality
such as parametric lighting, shadows and building energy analysis through the in-
tegration of Radiance, EnegyPlus and OpenFOAM.

• CEA or Comprehensive Environmental Assessment is a software tool used to assess
and subsequently optimise the environmental performance of buildings. It considers
multivariate factors such as energy use, carbon emissions and indoor environmental
quality.

• EnergyPlus is a widely used energy simulation software from the National Renew-
able Energy Laboratory (NREL) that models the energy consumption of buildings
in combination with HVAC systems. It enables the assessment of building energy
performance and provides metrics that can be used to develop energy efficient de-
signs.

• OpenStudio is a platform used to perform energy modelling and simulation for
buildings. It provides an interface to EnergyPlus and additional tools for advanced
building performance analysis.

• SAM or System Advisor Model is another toolkit developed by the NREL for the
design of systems integrating renewable energy concepts. Its main application is to
assess the economic and environmental impact of renewable energy sources such as
wind, solar and others.

A.3.2.5 Traffic and Pedestrian Analysis

• GAMA is a platform for modelling and simulation of complex systems such as
traffic and pedestrian dynamics. It can be used to study the behaviour of agents in
different environments, such as urban areas or public buildings.

• SUMO or Simulation of Urban Mobility is a traffic simulation software used to
model individual vehicles and pedestrians to analyse traffic flow, congestion and
transport.

• JuPedSim is another pedestrian simulation software designed to study crowd dy-
namics and pedestrian behaviour. It provides tools to help design public spaces and
optimise pedestrian flow within building complexes.
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A.3.2.6 Acoustic Simulation

• I-Simpa is an acoustic simulation software capable of analysing and calculating
sound propagation in different media and environments. Its capabilities enable
architects to evaluate and optimise the acoustic performance of buildings and spaces.

• NoiseModelling is a tool that allows users to create and analyse noise maps and
models. It is mainly used to reduce noise pollution in urban areas.

A.3.2.7 Urban Analysis

• UrbanSim is another open source software with a focus on urban simulation and
land use modelling. It can help planners understand urban growth patterns, infras-
tructure and the impact of urban regulations.

• URBANopt is an urban energy modelling platform that combines energy and ur-
ban simulation to analyse the energy performance of buildings and their interactions
with the surrounding environment.

• QGIS or Quantum GIS is a Geographic Information System (GIS) software that
allows users to analyse, visualise and interpret a variety of different spatial data,
providing an important tool for urban planning.

• UrbanPy is a Python library that facilitates urban data analysis and simulation
by providing tools to work with geospatial data and perform various urban analyses
and simulations automatically.

• OSMnx is a Python library used to retrieve and analyse OpenStreetMap data.
It is capable of generating urban road networks, visualising urban patterns and
performing network-based analysis.

• Mega-Polis is a data-focused urban add-on for Blender that provides a range of
capabilities for collecting, analysing, generating and visualising urban data. It uses
Python libraries such as GeoPandas, NetworkX, OpenCV and Shapely to enhance
its functionality.

A.3.2.8 Resources and Datasets

• OSArch Community is a platform for sharing and discussing open source archi-
tectural design and BIM tools. It provides resources, forums and channels for the
exchange of information in the AEC industry.

• Brick is a data model for representing buildings and their systems. It helps stan-
dardise and access building data for many purposes, such as energy modelling or
performance analysis.

• MaterialsDB is a database of building materials and their properties. It provides
information for architectural and engineering simulations, allowing the selection of
appropriate materials based on selected performance criteria.

• ÖkobauDat is a German database that catalogues ecological building materials
and products, making it an important resource for sustainable and environmentally
friendly building practices.

• BDG2 or Building Data Genome 2 dataset includes 3 053 energy meters in 1
636 buildings, providing two years of hourly measurements. The data includes
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electricity, heating, cooling water, steam and irrigation meters.

• CubiCasa5k is a dataset of 5 000 floor plans of residential buildings. It could
be used as a basis for various machine learning tasks in the field of architectural
automation.

• RPLAN is an extensive dataset of annotated and cleaned floor plans extracted
from actual residential building layouts.

A.3.3 Application in this Thesis
This work is largely based on open source knowledge and software and would certainly not
have been possible without it. Furthermore, the data, information, models and results
of this work will be made publicly available and openly accessible, downloadable and
modifiable on online portals appropriate to the type of data (section 6.1). During the
development of this work, a partial ambition was to use exclusively open source programs
to conduct a feasibility study on the state of the art of OSS in the AEC industry. Despite
the primarily academic nature of the work, a complete OSS workflow was developed
without much difficulty, thus proving the feasibility of such an approach.

In addition to basic software such as Python, Linux, Blender and Pytorch, programs
such as Sverchok, TopologicPy and DGL proved particularly helpful in their application.
The most important aspect of their implementation, however, was the exchange with
the respective developers about the functionality, use and operation of the individual
libraries. For example, contact with Professor Wassim Jabi4, the principal developer of the
TopologicPy library, proved invaluable. The opportunity to study the source code allowed
a deep understanding of the functionality and, after repeated exchanges, it was possible
to develop new functions and integrate them into the software source code as so-called
pull requests. In this way, functions and methods for dataset balancing, energy simulation
optimisations and the implementation of graph regression training and evaluation were
contributed.

This shows that an equally important part of the OSS community is the sharing and
publication of knowledge and results, in addition to the disclosure of source code. In this
context, media such as the OSArch Community5 and its associated wiki have proven to
be extremely helpful in process development and in the search for inspiration. Publicly
available project and code repositories such as GitHub, GitLab and kaggle also provided
essential resources, mostly through detailed introductory texts and easy contact with
developers and interested contributors. Last but not least, the publication of scientific
papers can also be seen as a source of academic collaboration and contribution.

4Jabi 2013, Parametric design for architecture.
5Moult 2020, OSArch Community.
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Appendix B

Raw Data

The experimental part of this work is a mostly data-based approach, especially the ma-
chine learning part. Thus, large amounts of data have been stored, reviewed and modified
during the process in human-readable tabular, graphical or geometric visual forms. How-
ever, since the purpose is to demonstrate the process rather than to guide the reproduction
of the results, the excerpts of this data are found in the appendix rather than in the body
of this document. Nevertheless, the form of this information played an essential role in
the parametric generation and training process. The samples of data presented in the
following paragraphs have been applied in different areas and are broadly divided into
geometric, graphical and informative data. The geometric part mainly refers to infor-
mation that was needed, generated or defined as an initial rule during the geometric
generation step. The graphical data represents the storage of the knowledge graphs in
machine readable form as input to the deep learning section, and the informational data
deals with the storage in JSON format, node label and quantile computation, and graph
label computation.

B.1 Geometry Data

B.1.1 Input Parameter
One of the initial requirements of the geometric generation pipeline to ensure architectural
coherence was the definition of maximum and minimum room sizes according to the
respective room types. Furthermore, this size definition also determined which individual
rooms the different apartments contained in their program, according to their number of
rooms. For example, a three-room apartment has only a living room, a bathroom and a
bedroom, whereas a ten-room apartment has three utility rooms and four bedrooms, as
well as a toilet, a bathroom and a living room.

The tables B.1 and B.2 show the minimum and maximum room sizes respectively. The
amount of rooms is shown per column and the room types are represented by individ-
ual rows. The last line shows the value of the sum of all living areas of the respective
apartment type, thus describing the maximum and minimum total apartment sizes to be
generated per amount of rooms.
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Room amount 3 4 5 6 7 8 9 10
Living 28 26 28 29 28 30 33 36

Bedroom 8 9 10 13 12 10 12 14
Bedroom 9 8 9 11
Bedroom 6 7 8
Bedroom 6
Bathroom 3 4 4 4 4 4 6 7

Toilet 1 1 1 1 1 2
Utility 3 5 3 3 1 3 4
Utility 12 8 8 12 12
Utility 4 6
total 39 42 48 62 65 68 87 106

Table B.1: Minimum Room Sizes per Room Amount

Room amount 3 4 5 6 7 8 9 10
Living 32 30 32 33 32 34 37 40

Bedroom 12 13 14 17 16 14 16 18
Bedroom 13 12 13 15
Bedroom 10 11 12
Bedroom 10
Bathroom 7 8 8 8 8 8 10 11

Toilet 5 5 5 5 5 6
Utility 7 9 7 7 5 7 8
Utility 16 12 12 16 16
Utility 8 10
total 51 58 68 86 93 100 123 146

Table B.2: Maximum Room Sizes per Room Amount
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B.1.2 Geometry Storage
Geometric bodies can be stored in a machine-interpretable form in a number of ways. In
this work, the use of the geometry kernel OpenCASCADE1 led to the decision in favour
of Boundary Representation, as this allowed seamless integration with TopologicPy. The
Brep files are hierarchically structured and are therefore similar to the functionality of the
Python library used, since elements of higher order such as shells, solids and compounds
are composed and described by smaller elements such as vertices, edges and faces.

The text-based file format (listing B.1) defines and stores different elements by Cartesian
coordinates, which are stored through three-dimensional matrices or single coordinates
with respect to the origin. The bodies described in this way are first specified by their po-
sition in three-dimensional space and then defined by three-dimensional points according
to their respective geometry. The geometric section of the Brep file is therefore made up
of the following elements: 2D curves, 3D curves, 3D polygons, polygons on triangulations,
surfaces and triangulations. In addition to its seamless integration into the geometry
generation pipeline, this file format is also suitable because it provides the geometry de-
scription privileged by the IFC format.

Curve2ds 4
1 0 .4 0 .88 −1 0
1 0 .4 −0.88 0 1
1 −0.4 0 .88 0 −1
1 −0.4 −0.88 1 0

Curves 4
1 4 .7 1 1 .6 1 .1 0 −1
1 4 .7 2 .8 1 .6 0 −1 0
1 4 .7 1 0 .8 0 1 0
1 4 .7 2 .8 0 .8 −1.1 0 1

Sur f a c e s 1
1 4 .7 1 .9 1 .25 1 0 0 −0 0 1 0 −1 0

TShapes 10
Ve
1e−07
4 .7 1 1 .6
0 0

. . .
Listing B.1: Brep File Structure

B.1.3 Energy Simulation Parameter
An essential part of the dataset generation was the implementation of energy performance
simulations of each BIM model. As described in section 4.4.2 and figure 4.24, a successful
energy simulation using the EnergyPlus and Openstudio software required the definition

1Slyadnev, Malyshev, and Turlapov 2017, “CAD model inspection utility and prototyping framework
based on OpenCascade”.
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Location Windows Int. Walls Ext. Walls Type Insulation
Berlin Double Glazed Gypsum Concrete Midrise Apt. 12cm

Table B.3: Energy Simulation Values

Graph ID Energy Class Energy Consumption Node Amount
8 3 758.59 14

Table B.4: Graph Data

of several parameters. The main initial values chosen for the experiment are shown in the
table B.3.

The definition of the location (in this case Berlin) is essential, as the latitude and the
associated climate difference have a significant influence on the results of the energy
balance. In order to generalise the climate, a number of additional datapoints would
have to be added to the dataset, differing only in the location of the EnergyPlus Weather
Format (EPW) file. In addition, the B.3 table shows that the materials of the individual
apartment walls and ceilings, including the insulation, have a generic composition with
concrete or gypsum depending on their function. Again, greater versatility in the training
process is possible by extending the dataset and graph labels.

B.2 Graph data
The human-readable graph objects produced by DGL are stored in a specific text-based
format that allows the generated graphs to be reviewed, modified, or integrated into
various data science processes. However, to save space, large graph databases are typically
stored as binary files using the standard Python library Pickle.

The resulting files consist of three separate text files corresponding to the graph compo-
nents: node, edge and graph. The information shown in the table B.4 is an excerpt from
the graph-wide text file, which first defines in tabular form a graph identification number
per object in the dataset. For performance reasons, the number of nodes contained in the
graph is also stored here. This information is already sufficient to describe a complete
graph. However, to create a meaningful dataset it is also necessary to store the nodes
and edges in their individual text files and to add one or more labels to the graph object.
These labels are, in this case, the energy class and the energy consumption value, which
allow the machine learning model to learn the relationships between the graph structure
and the energy performance.

According to the number of nodes, the individual vertices are defined in the node file
(table B.5) for each graph of the dataset and assigned to the individual graphs with the
graph identification number. The nodes are also given an individual identification number,
which allows each node of the whole dataset to be referenced precisely and is essential
for defining the edges of the graphs. The most important part of the node file, however,
is the node label column, where each node can be assigned an arbitrary label, which,
together with the graph labels, will be used as input for the machine learning process. In
the procedure demonstrated in this thesis, the node labels consist of encoded information
about the element type, its size and its orientation. More detailed information about the
node label calculation can be found in section B.3 and table B.9.

Now that the general graphical data and node specific information has been defined,
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Graph ID 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Node ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Label 89 60 65 80 2 78 72 69 83 26 78 10 66 33

Table B.5: Node Data

ID 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SRC 0 0 0 1 1 1 1 1 1 3 3 5 5 7 7 7 8 8 10 10 12
DST 3 2 1 7 3 5 8 6 2 8 4 7 6 8 10 12 9 10 11 12 13

Table B.6: Edge Data

only the edges between the nodes need to be described and stored. This is likewise
achieved by a tabular text file (table B.6) that summarises the total number of edges
in the dataset. Each individual edge is described by a column of the table and is first
assigned to the respective graphs by the graph identification number, as in the case of
the nodes. Furthermore, each node is defined by its source (SRC) and destination (DST)
node points, which are referenced by the node identification numbers. The edge file thus
represents a classical edge list notation. In the case of this work, we are dealing with
undirected graphs, which means that an edge with (u v) also appears as (v u) in the edge
list (table B.7).

B.3 Information Data

B.3.1 BIM Model Storage
The values generated during the information annotation process had to be correlated
using specific file formats in order to avoid an unnecessarily complex data generation
process. The key-value pair based text format JSON was chosen as the main format
for data storage. This choice was made not least because the applied geometry and
analysis library TopologicPy is equally based on JSON files for importing and exporting
the individual topological geometries.

This allows all the information about the individual BIM elements to be stored in a single
file for each apartment. In addition to the JSON format, the IFC file type was also
considered, but in the end the simplicity of the JSON structure was preferred. The B.2
listing shows a simplified example file of annotated apartment geometry, consisting of
information about the geometry as Brep strings and values at different element levels.

First, the Brep of the apartment and the individual rooms are listed with their respective
types, surface sizes and labels. Then the apartment level information is listed, such as
number of rooms, room types and total area. Also stored at this level are any values that
provide information about the energy balance of the architectural object, such as heating
and cooling energy, general energy consumption, energy class, window-wall ratio and
window opening per orientation. Although in the end only the site energy consumption

ID 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SRC 3 2 1 7 3 5 8 6 2 8 4 7 6 8 10 12 9 10 11 12 13
DST 0 0 0 1 1 1 1 1 1 3 3 5 5 7 7 7 8 8 10 10 12

Table B.7: Edge Data Undirected
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per square meter and the energy class were used for training, it was important to test
the information storage capabilities of the file format for experimental purposes. Finally,
under the key: ’faceApertures’, the windows of the model are noted with their respective
geometry as brep strings, area, orientation and label.

[
{

’ geometry ’ : ’ brep ’ ,
’ c e l l D i c t i o n a r i e s ’ : [

{
’ d i c t i o n a r y ’ : {

’ area ’ : 3 . 11 ,
’ e lement ’ : ’ room ’ ,
’ l a b e l ’ : 84 ,
’ type ’ : ’ bathroom ’

}
} ,
{

’ d i c t i o n a r y ’ : {
’ area ’ : 8 . 1 ,
’ e lement ’ : ’ room ’ ,
’ l a b e l ’ : 77 ,
’ type ’ : ’ bedroom ’

}
} ,
{

’ d i c t i o n a r y ’ : {
’ area ’ : 28 .54 ,
’ e lement ’ : ’ room ’ ,
’ l a b e l ’ : 56 ,
’ type ’ : ’ l i v ingroom ’

}
}

] ,
’ d i c t i o n a r y ’ : {

’ element ’ : ’ apartment ’ ,
’ room amount ’ : 3 ,
’ area ’ : 39 .75 ,
’ room types ’ : [

’ bathroom ’ ,
’ bedroom ’ ,
’ l i v ingroom ’

] ,
’ s i t e energy coo l i n g GJ ’ : 0 . 61 ,
’ s i t e energy coo l i n g MJ/m2 ’ : 19 . 0 ,
’ s i t e energy heat ing GJ ’ : 18 .18 ,
’ s i t e energy heat ing MJ/m2 ’ : 567 .51 ,
’ t o t a l e x t e r i o r wa l l amount ’ : 4 ,
’ t o t a l s i t e energy consumption GJ ’ : 24 .73 ,
’ t o t a l s i t e energy consumption MJ/m2 ’ : 771 .98 ,
’ t o t a l source energy consumption GJ ’ : 85 . 16 ,
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’ t o t a l source energy consumption MJ/m2 ’ : 2658 .05 ,
’ energy c l a s s ’ : 3 ,
’ t o t a l wa l l area m2 ’ : 61 . 13 ,
’ t o t a l window−wal l r a t i o %’ : 8 . 52 ,
’ t o t a l window amount ’ : 3 ,
’ t o t a l window opening area m2 ’ : 5 . 21 ,
’ wa l l area ea s t m2 ’ : 15 . 28 ,
’ wa l l area north m2 ’ : 15 . 28 ,
’ wa l l area south m2 ’ : 15 .28 ,
’ wa l l area west m2 ’ : 15 . 28 ,
’ window/ wal l r a t i o ea s t %’ : 0 . 0 ,
’ window/ wal l r a t i o north %’ : 34 .09 ,
’ window/ wal l r a t i o south %’ : 0 . 0 ,
’ window/ wal l r a t i o west %’ : 0 . 0 ,
’ window opening area ea s t m2 ’ : 0 . 0 ,
’ window opening area north m2 ’ : 5 . 21 ,
’ window opening area south m2 ’ : 0 . 0 ,
’ window opening area west m2 ’ : 0 . 0

} ,
’ f aceAper ture s ’ : [

{
’ geometry ’ : ’ brep ’ ,
’ d i c t i o n a r y ’ : {

’ area ’ : 1 . 35 ,
’ e lement ’ : ’ window ’ ,
’ l a b e l ’ : 24 ,
’ o r i e n t a t i o n ’ : ’N ’

}
} ,
{

’ geometry ’ : ’ brep ’ ,
’ d i c t i o n a r y ’ : {

’ area ’ : 3 . 35 ,
’ e lement ’ : ’ window ’ ,
’ l a b e l ’ : 32 ,
’ o r i e n t a t i o n ’ : ’N ’

}
} ,
{

’ geometry ’ : ’ brep ’ ,
’ d i c t i o n a r y ’ : {

’ area ’ : 0 . 51 ,
’ e lement ’ : ’ window ’ ,
’ l a b e l ’ : 0 ,
’ o r i e n t a t i o n ’ : ’N ’

}
}

]
}
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XXS | XS XS | S S | M M | L L | XL XL | XXL
Window 0.503 0.823 1.304 2.214 3.538 5.327

Livingroom 27.397 29.685 31.376 33.409 35.349 37.953
Bedroom 8.137 9.255 10.261 11.322 12.491 14.218

Toilet 2.419 3.288 3.853 4.303 4.814 5.463
Bathroom 4.759 5.863 6.662 7.367 8.121 9.147

Utility 5.171 6.186 7.007 8.206 10.361 13.114

Table B.8: Room Size Quantile Calculation

]
Listing B.2: JSON File Structure

B.3.2 Node Label Calculation
In order to calculate the node labels, the element types living room, bedroom, toilet,
bathroom and window must be divided into relative size classes. These seven classes
range from XXS to XXL and describe the size of the item in relation to the total set
of sizes. A division into so-called quantiles of the distribution was therefore necessary,
but could only be carried out after the entirety of the BIM models had been generated.
The quantile values calculated in this way can be found in the table B.8 and describe the
threshold value that separates two classes.

The final step in calculating the labels shown in the listing B.2 was to encode the categories
of each element into integer labels ranging from 1 to 91 (figure B.9). This is a simple type of
encoding where the three categories: type, size and, in the case of windows, orientation,
are listed and then simply labelled by their index in the list. This method allows the
individual elements to be categorised and distinguished from each other. Other types
of encoding were also considered, such as feature-based encoding, where the described
procedure is applied to each feature individually, thus generating two labels for rooms
and three for windows. Nevertheless, the first described method was chosen for this
experiment. For the node labels, however, it is important to note that the integer labels
are one-hot-encoded anew when the DGL dataset creation methods are applied.

B.3.3 Energy Class Definition
Since the classification task involves the prediction of distinct classes, the site energy
consumption values first had to be divided into energy classes. Similarly to the method
described in table B.8, all the energy simulations were first performed in order to divide
the general distribution (figure 4.29) of the energy values into quantiles according to the
desired number of classes. Table B.10 shows the quantile thresholds generated in this way
for five energy classes. It is important to note that these classes, unlike the node labels,
are hierarchically related. This means that an apartment with an energy class of zero will
perform better in terms of energy efficiency than an apartment with a class of one, and
so on.

B.3.4 Graphical to Tabular Data Conversion
In order to perform the comparisons described in section 5.3.3 with different machine
learning models, the initially purely graphical information had to be converted into con-
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Label Type Size Orientation
1 window XXS N
2 window XXS NE
3 window XXS E
4 window XXS SE
5 window XXS S
6 window XXS SW
7 window XXS W
8 window XXS NW
9 window XS N
.. ...... ... ...
57 livingroom XS
61 livingroom XL
64 utility XS
68 utility XL
71 toilet XS
75 toilet XL
78 bedroom XS
82 bedroom XL
85 bathroom XS
89 bathroom XL
.. ........ ...

Table B.9: Node Label Calculation

0 | 1 1 | 2 2 | 3 3 | 4
Energy Class 617.19 659.78 702.98 777.72

Table B.10: Energy Class Quantile Calculation

150



18 45 56 76 92 109 125 141
Rooms 8 3 9 8 10 7 5 4

Windows 8 8 9 8 10 11 9 9
Surface 84.95 32.04 100.18 92.15 131.11 79.87 59.48 49.14

Consumption 704.06 878.09 667.81 666.68 634.52 791.09 818.39 845.12
Energy Class 3 4 2 2 1 4 4 4

Window m2 N 9.06 6.57 0 0 0 4.46 10.36 7.46
Window m2 E 8.34 1.31 6.62 4.86 2.48 11.27 0 9.3
Window m2 S 0 0.65 6.13 7.35 14.57 10.09 11.3 1.56
Window m2 W 4.83 2.54 11.17 8.73 10.69 5.89 1.74 1.5

Table B.11: Graph Derived Data

18 : 86, 78, 59, 80, 79, 63, 71, 67, 47, 48, 50, 2, 16, 2, 24, 26
45 : 84, 77, 56, 14, 32, 6, 32, 12, 30, 0, 26
56 : 76, 60, 80, 68, 63, 78, 66, 90, 77, 46, 54, 2, 2, 42, 20, 6, 44, 26
76 : 75, 77, 89, 60, 64, 67, 78, 82, 18, 2, 52, 34, 20, 4, 54, 38
92 : 76, 78, 79, 62, 81, 82, 68, 68, 88, 65, 52, 12, 44, 14, 46, 10, 36, 10, 46, 18

109 : 68, 83, 81, 86, 58, 63, 71, 18, 52, 20, 34, 4, 47, 15, 40, 34, 42, 8
125 : 75, 57, 66, 87, 80, 19, 51, 22, 27, 0, 40, 19, 14, 48
141 : 64, 86, 79, 57, 8, 42, 4, 42, 4, 24, 20, 30, 40

Table B.12: Graph Derived Data Labels

ventional tabular form, since DGCNN is the only one of the models that can be trained on
data presented in the form of graphs. To achieve this conversion, first had to be considered
what information was contained in the graphical dataset (section B.2). So the categories:
Space and number of windows, window area by cardinal direction and previous node labels
were identified. As a target variable, according to the prediction task, the energy class
or the energy consumption value was used in the same way as in the graphical dataset.
Table B.11 shows an extract of this tabular dataset for the datapoints: 18, 45, 56, 76,
92, 109, 125 and 141. For spatial reasons, the nodelabel list of each datapoint is shown
in the table B.12, but in reality these datapoints are stored in a single database. The
resulting table, not least because of its tabular form, contains different information to the
graphical dataset, which should be taken into account when evaluating the performance
comparison of the different models.
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