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Introduction

The increasing application of computer sci-
ence in a wide range of industries has be-
come reality since the vulgarization of that
technology and the facilitated access for
a broader public. Applications are as di-
verse as the underlying mechanisms, rang-
ing from simple code-based optimizations
to simulations in all directions to fully dig-
itized frameworks. That scientific fields
such as natural, structural, economic, and
engineering sciences benefit from increas-
ing digitization is fairly natural and eas-
ily explained by the relevance of mathe-
matical modeling, computational simula-
tions, and the need for significant compu-
tational power, but this interaction is far
less intuitive when considering the exam-
ple of artistic or humanistic fields. This
report examines the interaction between
computer science and the field of archi-
tecture, which is situated between science
and art. In particular, the topic of auto-
matic floor plan generation is explored as
a starting point for exploring applications
such as simulation, analysis, data manipu-
lation, and machine learning based on the
generated data. Each of these topics has
been extensively researched by academia
in recent years and therefore provides ex-
tensive documentation of scientific reports.
This explains why this work is partly based
on third party work, but attempts to bring
each topic together in a relevant way to
create a workflow that can potentially pro-
vide new insights. Due to the significant
amount of existing research and informa-
tion, a comprehensive review and thor-
ough reading of relevant research is essen-
tial. In addition, a significant emphasis is
placed on the interplay between computer-
based algorithms and the inherent creativ-
ity of the architectural profession, which
is difficult to combine with digital tools.
Thus, this is neither a purely scientific work
nor an exclusively experimental investiga-
tion, but rather the structured documen-
tation of a problematic investigation with
sensitive consideration of interdisciplinary
aspects.



Abstract

This project attempts to generate a synthetic dataset of archi-
tectural entities using parametric modeling to enable automation
within a defined range of variability. To achieve this, several steps
with different software libraries and algorithms are necessary, as
the results of each step have to be analyzed and verified against
different features. First, the focus is on the parametric genera-
tion of an apartment floor plan using Python, Blender’s Sverchok,
and various algorithms such as Voronoi diagrams, KD trees, and
genetic algorithms. After generating a manifold spatial configu-
ration, it can be analyzed from different geometric aspects using
the Python library Topologic. It is important that these two steps
are in constant exchange to combine the geometric data with the
evaluation of the spatial analysis and to store the information in
a file format suitable for the data. These formats can range from
simple two-dimensional files to database formats or graphical data.
With the help of topological analysis, apertures such as doors and
windows can be integrated into the basic geometry in a variable
pattern within the framework of defined spatial and architectural
rules. The final step involves reconstructing the data in geomet-
ric form into a three-dimensional model that is finally enhanced,
improved, stored and displayed in a common open source BIM
format such as IFC using IFCOpenshell, BlenderBIM, Topologic
and Opencascade.

In addition, a requirement is that the dataset can be easily supple-
mented with physical and environmental analyses, such as the use
of light and radiation-based simulations with Radiance, Vi-Suite,
Honeybee and OpenStudio, or a simulation of the energy behav-
ior of the architectural object with Energy+, Vi-Suite-Energy and
the core component of OpenStudio in order to add an evaluation
layer. The evaluated geometric synthetic data can thus be used as
training data for a machine learning model and should be able to
counteract the traditional bias thanks to the synthetic data ori-
gin, in contrast to the common use of real life data by real estate
companies or architecture firms.

Special attention is paid to the consistent use of python-based li-
braries to ensure the best possible compatibility of the individual
software interactions. Furthermore, only open source projects are
used for didactic, ideological and compatibility reasons. During
the execution of the individual steps, possible problems, sugges-
tions, solutions, proposals for improvement and last but not least
ideas for further research of the topic are recorded, which are de-
scribed in detail in the following report.

The apartment layouts generated show a high variance and allow
a high degree of intervention and control in the generation process
thanks to the parametric rule-based generation method. The ad-
vantages in the application in connection with machine learning
are convincing, but will only be proven in the continuation of this
work in a direct comparison with models trained on conventional
data sets.
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Figure 1: Process

This report is part of a long series of research on the interaction
between machine learning and architectural design. The following
project was developed within the framework of the Architecture
and Design Studio at the Université libre de Bruxelles, which is
characterized by an openness to new technologies associated with
architecture. The focus of the studio is to raise interdisciplinary
questions between technology, research and architecture that can
be freely developed without having to remain in their limited do-
mains.

The goal is to develop hypotheses about the future of architecture,
taking into account all areas that may be of interest to the design
process of the project. In every aspect of project development, it is
important to consider the analysis of new scientific knowledge and
explore the achievements of current science. However, it is equally
important to base experiments on inventions that have emerged
throughout history.

In this studio, the primary goal is not to invent new objects, but
rather to deepen the investigation of a particular topic using all
existing publications and research to formulate a relevant research
hypothesis. The goal is then to begin a process of experimenta-
tion accompanied by meticulous documentation. The goal of this
process is to find answers to the questions raised in the prelimi-
nary phase. In this way, the experimentation cycle advances the
research and possibly leads to a concrete solution, but in any case
raises new questions that can subsequently be pursued.



Hypothesis

The operation of the studio is closely linked to the FabLab of the
Faculty of Architecture, which provides access to numerous tools
for design and experimentation. This space will also serve as a
library for the skills acquired by each individual and thus for the
emergence of collective knowledge. As a result of the restructur-
ing related to the Covid 19 pandemic, the workshop has become a
paperless studio, which means that the visual representations and
research objects are predominantly digital.

The use of intelligent neural networks and machine learning trained
models to optimize traditionally manual processes is becoming the
norm. Machine learning is no longer limited to computer science,
but extends to any field as long as a database to be analyzed
is involved or can be created. It is therefore not surprising that
self-learning models have also found their way into architectural
optimization.

However, the application of machine learning in architecture is
far-reaching and can be useful in any project development pro-
cess. For example, intelligent model parameterization can help
find the appropriate shape even before a concrete project is mod-
eled; mechanical analysis of existing conditions and constraints
can be helpful in determining approximate volumetrics. In ad-
dition, it is possible to use intelligent algorithms to generate the
layout of the interior space, proposing several adapted plans that
can lead to a qualitatively improved experience for the occupants.
This optimization is not limited to the two-dimensional space and
can therefore provide suggestions for optimal circulation or day-
light optimization throughout the building. In addition to the
conceptual phase, it is also possible to optimize the BIM model
through various machine learning algorithms. All these processes
are no longer visions of the future, but have already become the
standard, albeit often automated and therefore not directly visi-
ble. This report will focus mainly on the application of geometric,
pseudo-intelligent and evolutionary algorithms in the conceptual
design phase to try to automate the generation of floor plans in
order to obtain an optimized plan through subsequent steps.

The premise of this work is the assumption that there is a direct
relationship between external conditions such as spatial connec-
tions, solar radiation, shading, humidity, wind flow, heat genera-
tion, soil conditions, air quality, pedestrian traffic or traffic load
and the quality of housing perceived by the occupants.

The main hypothesis addressed in this report concerns whether
and to what extent synthetic architectural datasets generated by
different algorithms can simplify, accelerate, and/or optimize the
architectural design process and to what extent training machine-
learning models on synthetic datasets leads to diversity in the
results. Is it possible to automatically generate meaningful and
architecturally sophisticated floor plan layouts? What are the ad-
vantages of synthetic datasets in architecture and what problems
can be avoided? Furthermore, this paper investigates to what ex-
tent it is possible to perform a complete workflow from generation
to simulation, analysis, prediction and back to generation without
having to resort to proprietary software, thus describing a step
towards the democratization of architecture and its digital tools.



State of the
Art

Since this project deals with different topics, the collection of pre-
vious works is divided into hierarchical subgroups accordingly.
First, the role and emergence of computational design will be
considered with parametric, generative, and algorithmic design
as subgroups. The origins date back to 1960, when Sutherland
made a major step towards the automation of architectural draw-
ings and the digital parameterization of the relationships between
individual geometric entities with the SKETCHPAD software. In
the years that followed, several individual approaches to modeling
building information evolved, inspired by major computer confer-
ences. The establishment of various computer-aided design soft-
ware paved the way to visual programming interfaces, and with it,
access to parametric and generative design tools for the masses.
In this work, geometric parametric tools are focused on the visual
interface of the Sverchok add-on for the blender three-dimensional
machining software, which makes use of various Python libraries,
in addition to back-end Python coding. The first goal of this the-
sis, the automatic generation of synthetic floor plans, has been
widely researched as a topic and this with many vastly different
tools that can be roughly divided into simple algorithms, intel-
ligent algorithms, and machine learning algorithms. The group
of simple algorithms is divided into geometric space partitioning
by Voronoi diagrams and their derivatives such as Delaunay tri-
angulation, Lloyd’s algorithm, orthogonal Voronoi diagram, and
weighted Voronoi diagrams. Also mentioned are approximation
schemes for subdivision such as Cutmull-Clark and interpolat-
ing schemes such as Butterly subdivision surfaces. Kdimensional
trees, originally from the family of such algorithms, differ from the
previous ones, despite the essential similarities, by subdividing the
input points as opposed to polygons, which allows sensitive con-
trol over control points. The slicing tree method forms the link
between point-based and area-based subdivision. Another method
of simple algorithms is the shape-grammar methodology, which al-
lows rule-based geometry generation and thus room for variation
within defined limits. This topic has gone through many varia-
tions, such as the CGA shape or parametric shape grammar, and
is recognized as a programming language in its own right due to
the successful simulation of Turing machines. Far enough away
from these methods to define themselves as a distinct group are
physical solution methods such as attraction models or the Mag-
netizingFPG algorithm, which are based on them to some extent.
However, in this paper we will mainly focus on the latest and
more interesting topology-based method developed by professor
dr. Wassim Jabi. Topologic is not a layout generation method,
but rather an Opencascade-based geometry processor that handles
non-manifold topologies, reducing architectural spaces to simple
cells and cell complexes. This method enables layout creation
by combining the above methods and paves the way to a simple
geometry-to-file workflow. In addition, topologic’s boundary rep-
resentation method facilitates environmental simulations for sub-
sequent plan evaluation stages. However, by far the biggest ad-
vantage of topologic is its analytical approach to continuous space
and relationship perception, which enables the arbitrary addition



Process

of openings such as doors and windows, as well as the graphi-
cal generation of various topological parameters and, last but not
least, an interface to common BIM file types such as IFC, BREP
and JSON.

More relevant than the aforementioned approaches in the floor
plan generation literature since the 1990s are intelligent methods
such as evolutionary algorithms. These are input populations that
undergo evolutionary fitness phases through biologically inspired
mechanisms such as reproduction, mutation, recombination, and
selection, leading to optimization of the fitness function. Evolu-
tionary algorithms can be combined with simple geometric meth-
ods through goal definition and can also be used for optimization
through evaluation analysis. Computational intelligence also in-
cludes machine learning and neural networks, which are by far the
most widely used methods in the field of automated floor plan
generation. However, the previously mentioned methods differ
drastically from artificial neural network applications, as the lat-
ter are based on learning features in defined training datasets. In
the context of plan generation, these datasets are real-world plans
designed by humans. Thus, the computer-generated floor plans
resemble the input drawings, but leave room for differentiation,
which is limited by the learning process based on existing plans or
the evaluation based on appropriately defined examples.

This work is an experimental-explorative approach, i.e. the pri-
mary goal is not to achieve an optimized process, but rather to
critically question the individual steps. Thus, by repeatedly ques-
tioning the method, insights can be gained that will be useful in
subsequent phases. In addition, there is a significant focus on an-
swering the questions formulated in the hypothesis, which means
that the individual steps should be reflected on several levels in
order to gain not only technical but also moral, ethical and social
insights.

First, the topic of parametric automated plan generation must be
addressed in depth. In today’s world, artificial intelligence is used
as a kind of selling point, a solution to all complex problems, which
raises the question of whether this assessment is true, or whether
this term is simply associated with idealized solutions? Once these
questions are answered and a concrete concept has emerged from
the abstract term, it becomes possible to think about connections
between architecture and machine learning that simplify existing
design processes, blueprints, simulations, or constructive proce-
dures.

Just as important as a clear understanding of the subject mat-
ter is a thorough examination of the available libraries and their
features to create a customized network diagram that covers the
interactions. The open source community, through platforms such
as Github, Gitlab, and OSArch community, provides a proper and
direct exchange with developers and interested parties and a com-
plete understanding of the functions and operations, as well as
detailed documentation in most cases. With the help of various
forums and exchanges with developers, it is possible to gain a com-
prehensive understanding of the software in question in a relatively
short time and thus advance the ideas of the project.



Objectives

Roadmap

The experimental freedom explained above also leads to flexibility
with respect to the defined goals. In general, there are objectives
for each stage, but this does not mean that a step has failed if
their outcomes are different from those expected or formulated in
advance. For example, the parametric generation stage has as a
desired outcome the generation of synthetically generated models
that can be constrained by certain parameters. These can be the
number of living rooms, the number of occupants, the area, the
volume or the shape of the floor plan. The end result of this phase
should be a database of the different geometries that describes
each situation as accurately as possible, while still requiring a
minimal number of points. In the next phase, the simulations
would generate new evaluation values that could be added to the
geometry database. The next step would be to train a model
that graphically describes the relationship between each value as
accurately as possible. The final step is to create an accurate
visualization of the predicted scenario.

X Information Gathering

X Resources
X Code Repositories
X Academic Papers
X Books / Reports / Articles
X Student Works
X Bibliography
X Adequate Software

X Code Documentation
X Explanatory Resources

X Geometric Generation

X Methods

X Algorithm
X Evolutionary Generation
KD Tree
Physics Simulation
Shape Grammar
Shape Packing
Convex Hull
Voronoi Diagram

X

X

X

X

X

X

X Orthogonal Voronoi
X Lloyd Algorithm

X Delaunay Triangulation
X Power Diagram

X Polygon Division

X Recursive Subdivision
X Recursive Bisection

X Machine Learning



X Neural Network
X Classification
X Parametric Generation
X Sverchok
X Python
O Evaluation
[0 Data Set Search
0 Comparison
[0 Estethic Verification
X Functional Verification
O Ideological Verification
[0 A Pattern Language

O Simulations / Analysis

O Environmental

U Energy
U Energy-+
[0 Openstudio-Energy
O Ladybug
O Vi-Energy
O Lightning
0 Radiance
[J HoneyBee
[ Openstudio
0 Vi-Radiance
O Air
O Crowd
0 Urban
O Life Cycle
O Spatial
[0 Topologic
[0 Structural
U Usage
0 Data Type Examination
[ Verification

X Data

X Manipulation
X Data / Database Types
X Structure

0 Training
0 Methods
J Visualization

O Geometry Viewer
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Layout
(Generation

The first stage of this work deals with the
automated generation of different apart-
ment layouts using various geometry pro-
cessing software. An alternative to the
generation approach is the acquisition of
existing architectural datasets provided by
real estate and research groups. Advan-
tages of reality-based datasets are the cer-
tainty of architectural feasibility and con-
struction of the individual plans, but dis-
advantages are a lack of learning process
and a conservative approach in creative
terms. Furthermore, there is a high risk of
) traditional bias due to the predominance
of local and traditionally influenced ar-
chitectural methods. Therefore, this ex-
perimental phase is primarily concerned
with testing different Floor Plan genera-
tion methods and their derivatives as well
as their possible combination. Simple al-
gorithms like voronoi diagrams and intelli-
gent methods like evolutionary algorithms
are explained and evaluated in various ex-
periments. Criteria for the evaluation are
simplicity in the construction process, com-
puting power, time and memory, integra-
tion and interaction with used software,
purity of the generated geometry, readi-
ness for the simulation stage, simplicity
for data storage but above all spatial qual-
ity, creativity in form finding and feasibil-
ity. After experimentation, the most suit-
able method or combination of algorithms
with respect to the following steps is se-
lected and an appropriate set of different
two-dimensional layouts is generated. In
order to increase the variation in the syn-
thetic dataset, results from different meth-
ods can be mixed, but they must not de-
viate from the generally defined quality
level. Furthermore, it is a requirement to
understand the functionality of the algo-
rithms sufficiently to allow slight adapta-
tions and combinations with other func-
tions and to achieve variation in the indi-
vidual applications. In general, simplicity
is preferred to complexity, creativity to or-
dinariness and variation to repetition.
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Figure 2: Layout Generation

The Genetic Algorithm developed by Holland and De Jong is an
optimization model based on Darwin’s natural selection-based the-
ory of evolution in biology. Its operation is based on biologi-
cal mechanisms such as crossover, recombination, mutation and
selection by fitness evaluation acting on a population of defined
size. Due to their mode of operation, genetic algorithms and their
derivatives are particularly adaptable and offer a parallelization of
the solution finding. However, for optimal application, the right
parameters have to be set, such as crossover and mutation rate,
population size, iterations and fitness boost. These parameters
are problem-dependent and there is a risk of an undesired and
non-optimized result if the starting conditions are set incorrectly.
The construction of an evolutive algorithm begins with the deter-
mination of the variable function to be optimized, which consists
of an unlimited number of components and has a tendency to-
wards zero. After the framework conditions of the algorithm have
been defined, the variables to be varied must also be determined,
whereby it is important to ensure a proportional relationship be-
tween parameter variance and fitness evaluation function. In Fig-
ure 16, the surface area of the X- and Y-dimensional bounding
box of an irregular three-dimensional body was defined as the fit-
ness function. The population of the genetic algorithm acts on
the three Eulerian rotation axes of the body and thus achieves a
minimization of the Z-section of the irregular shape by iterative
mutation and fitness evaluation.
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Figure 3: (a) Initial Rotation (b) Optimized Rotation

With increasing iterations and an increase of the population
number, the optimum is progressively approached, but the ques-
tion arises how such a method works theoretically and how it
proves itself on more complex problems? In Python there are
several established evolutionary algorithm libraries with different
integration mechanisms ranging from native python implementa-
tion to Keras and Pytorch or even scikit-learn integration. Since
this work is primarily focused on generation and manipulation of
visual and three-dimensional entities, the python native Blender
implementation of the Sverchok Genes solver was chosen as the
experimentation tool. This provides a seamless integration into
a visual scripting environment and thanks to Sverchok’s Blender
integration, Blender’s features such as the variety of available ex-

port file formats can be easily used.

In order to test the floor-plan-layout-generation capabilities of the
evolution algorithm in Blender, different rectangles with defined X
and Y sizes are first generated parametrically, each of these space
representations being anchored by its origin location and rotation
in two-dimensional space. The shape of each unit remains constant
and represents the space sizes of the different apartment compo-
nents. However, the localization and orientation of these modules
remains free and is defined as a population parameter.

13



Figure 4: Inital Layout

The fitness function is composed of the total length of the path
of the UV connection of the individual rectangle origins, added to
the total area of the two-dimensional convex hull with respect to
the Z-axis of the overall geometry. Thus, the smaller distance
between the individual units is rewarded in parallel by the total
area and the individual distance of the center points, while also
avoiding the overlap of the individual rectangles. This is achieved
by an irradiation function which evaluates the number of geome-
tries formed by a constant check of the boolean intersection to see
whether the total number increases. If this is the case, a defined
irradiation variable is added to the fitness function. The popula-
tion size is set to 500, the fitness boost to 5 and the mutation rate

to 0.3 with an iteration of 5.

Figure 5: (a) (b) (c¢) Optimized Layouts

14



K-D Tree

The different results generated parametrically by changing the
random seed of the algorithm give random results with an inter-
esting variance. Advantages of this method are the possibility of
parameterization during the execution of the algorithm, a paral-
lelization of the optimization, the possibility of defining different
spatial relations by multipliers, the adaptability of the framework
conditions and a variability of the obtained results. However, the
main disadvantage is the constant distance between the spaces,
which complicates the generation of boundary representation ge-
ometries and thus the complexity with respect to later environ-
mental simulations or topological analyses. Furthermore, this in-
creases the impurity of the geometry files to be stored. Possible
solutions to this problem are a change of the framework and an
extension of the irradiation function due to the overlap of the sin-
gle units, which could integrate the size of the overlapping surface.
Furthermore, it would be possible to implement a second method
that could lead to the cleanup of the overall geometry, but there
is a risk of altering the basic geometry by causing alternating non-
orthographic angles.

The k-dimensional tree data structure is a space partitioning pri-
marily used in computer science for search algorithms and thus
belongs to the family of binary space partitioning trees. It is the
partitioning of point-clouds in a k-dimensional space. In this work
I will limit myself to the two-dimensional space, since the floor-
plan layout can be described sufficiently in this dimension. In such
a data structure, the dataset is divided into branches by nodes and
branches, creating successive levels. Each of these branches leads
to a leaf, which carries the coordinates of exactly one point.

(b) (c) (d)

Figure 6: (a) O Iterations (b) 1 Iteration (c) 2 Iterations (d) 3
Iterations

The functionality of such a data tree can vary, but the basic
principles remain the same and can be implemented in a simple
way in python without using external libraries, building the tree
from the root upwards. First, the entire set of data points is
considered and a sorting axis is determined based on the depth of
the points. After these points have been sorted according to the
axis, the node point is determined. This is located on the median
of the point list and determines the coordinates of the subarea,
which in the following step divides the point list into two child
lists. The orientation axis of this intersection is also determined

15



by the depth of the dataset to be split. If the data set to be
divided consists of only one point, the leaf of the tree is reached
and the iteration is terminated at this node. Thus, by repeating
these steps, the complete tree is created using the logarithm.

(a) (b)

Figure 7: (a) 7 Room Layout (b) 10 Room Layout

In Blender’s Sverchok, creating a spatial K-d tree partition is
relatively simple and requires only list manipulation, mathemati-
cal operators, slicing planes and loops. The points to be split and
the corresponding planar area can be freely defined and are de-
scribed in the examples shown by X and Y size defined rectangles
and randomly selected points on this area. To avoid too small
sheet spaces, a minimum distance between these points is defined.
The number of these points is unlimited and can be defined ac-
cordingly, whereby their number determines the number of spaces
of the floor-plan.

(a) (b) (c)

Figure 8: (a) (b) (c) K-D Tree Layouts
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The main advantages of the described method are its speed
and simplicity, the generation of natively connected units which
simplify the export to boundary condition geometries, the possi-
bility to parameterize the generation process, the determination
of localizations of the individual spaces and the choice of the un-
derlying volumetry of the contours of the plan.

(b)

Figure 9: (a) (b) Rectangle Variations

The outlines of the individual shapes can assume any shape
of the rectangles and are thus adaptable to the different frame
conditions. Furthermore, it is possible without problems to de-
termine more complex shapes as input geometries, from deformed
rectangles to irregular polygons. However, this method also has its
drawbacks, such as the difficulty of generating composite apart-
ments in which individual units protrude beyond the floor-plan
contour as isolated shapes. Thus, it becomes complicated to gen-
erate shapes such as terraced garages or irregular facades.

(b) (c)

Figure 10: (a) (b) (c¢) Polygon Variations

KD-Tree and Genetic Algorithm

A possible combination between the k-dimensional space partition-
ing method and the evolutionary algorithm could be to optimize
the variables of space contour, space number, but especially the
point coordinates with a user defined fitness function according to
the desired results. Such a combination would optimize the floor-
plan generation according to the objectives, but it would not solve
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the above mentioned problems.

A Voronoi diagram is the decomposition of a defined body into
so-called Voronoi regions. Here, points in the nth dimension are
defined as the centers of the subdivision and the spans of these
spaces are all points that are closer to its center than to any other
point. Thus it is possible to subdivide any surface or volume into
regions and avoid overlap or spacing between the subdivisions.

Figure 11: (a) Spatial Voronoi (b) Separated Spatial Voronoi

For a successful Voronoi subdivision of a geometric body, only
the initial geometry has to be defined, the dimension and the sub-
division method have to be chosen, and finally the points of the
Voronoi centers have to be determined. If possible, these points
should be located on the basic body to be subdivided according to
the dimension, but they can also be projected onto it by a defined
thickness in the second dimension. With the Populate mesh node,
these points can be placed on the body using different distribution
methods.
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(b) (c)

Figure 12: (a) (b) (c) 2D Voronoi Diagrams

The resulting room partitions can be varied with the advantage
of being able to define the weight point of each room in advance.
Basically, there are two different floor-plan typologies that can be
generated. Those whose contour is predefined and therefore the
process is directed from shape to interior partitioning and those
whose geometric shape is determined by the interior partitioning
and therefore the contour depends on the number of rooms and
position of the seeds. The main difference is the organic irregular
contour of the latter typology, which tends to vary but is difficult
to reconcile with a predefined building framework.

Delaunay Triangulation

The seed point set that determines the Voronoi regions can also be
represented in a mesh. The most common of these meshed repre-
sentations is directly geometrically related to the Voronoi diagram
and is called Delaunay triangulation. More precisely, the delau-
nay mesh describes the dual graph of the voronoi pattern. Every
single triangle side intersects a Voronoi edge at a right angle and
this exactly at its center.

(a) (b) ()

Figure 13: (a) (b) (c) Delaunay Triangulation Variants
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Lloyd’s Algorithm

One of the most distinctive features of the voronoi subdivision
based on randomly chosen points is the irregular shape of the in-
dividual regions. These shapes are all convex by definition, but
their side length and number can vary greatly, and so can the
interior angle of each side. In traditional architecture, the norm
of designing orthogonal spaces has been established for simplicity
and interior design aspects, and thus architects are accustomed
to designing rectangular floor plans. To make a Voronoi subdivi-
sion approximate regular shapes, the seed points can be iteratively
shifted using the Lloyd algorithm, thus increasing the compacity
of the regions. This method consists of three distinct steps: first
the voronoi pattern of points is calculated, in the following step
the centroid of each of these voronoi regions is calculated and in
the last step the seed point is shifted to the calculated voronoi
centroid. After a few repetitions, a fair division of the total area
into Voronoi regions and thus more regular shapes of the regions
are obtained.

Apart from Lloyd’s method, maximization, average and minimiza-
tion of the individual region areas or edge lengths can also be used
for relaxation of the generated mesh.

(b) (c)

Figure 14: (a) Voronoi I (b) Voronoi II (c¢) Voronoi III
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(a) (b) (c)

Figure 15: (a) Lloyd Variant I (b) Lloyd Variant II (c) Lloyd
Variant IIT

(a) (b) (c)

Figure 16: (a) Relaxed Diagram I (b) Relaxed Diagram II (c)
Relaxed Diagram III

Laguerre-Voronoi

The most interesting variation of the voronoi daigram is called
Power diagram or Laguerre-Voronoi diagram. In contrast to con-
ventional Voronoi’s, the distance function is not described by half
of the length but can be defined individually as a radius function
of the respective regions. This allows a parametric control over
the individual space sizes.
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(b) (c)

Figure 17: (a) (b) (c) Weighted Voronoi Diagrams
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Figure 18: Power Diagram

To implement the radius distance function in sverchok blender
the rule: every voronoi diagram in the nth dimension is the weighted
diagram in the n-1th dimension was applied. In effect, this means
that a third value w can be added to the x and y dimensions of the
individual seeds of the two-dimensional diagram, which describes
the weight and thus the weighted distance function.
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Orthogonal Voronoi Diagram

Another less common variant is the rectangular voronoi which has
the particularity that each voronoi region describes an orthogonal
polygon and is therefore of special interest as an interface between
traditional floorplan generation and irregular spatial planning.

Convex
Hull

(b) (c)

Figure 19: (a) Initial Seeds (b) 3 Iterations (c) Complete Orthog-
onal Voronoi Diagram

The generation of this diagram is based on a sweep algorithm
with a predefined direction and skyline. First, the distance be-
tween the first two points in the dataset is considered, then a
boundary is drawn orthogonal to the sweep line and at half the
distance of the two points. The skyline is then moved to this limit
and delimits the area orthogonal to the first point. These steps
are repeated until each region is delineated.

To determine the convex hull of a point cloud, different algorithms
can be used whereby the final result remains the convex body
containing all points. In the context of the present work, this
method is different from the previous ones, since it is rather a
method that defines the outline of the floor plan to be created,
rather than a method for dividing the space.

Figure 20: (a) (b) Convex Hull Variants

Orthogonal Convex Hull

Since the generated tension surface is an irregular convex polygon,
its non-orthogonality makes it difficult to adopt as a conventional
floor plan. However, the orthogonal convex hull, in which the con-
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Recursive
Subdivision

nected outer points are connected by orthogonal lines, can provide
a suitable alternative.
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Figure 21: Orthogonal Convex Hull

The resulting outlines are similar to those of a conventional
floor-plan and can be reconstructed into spatial units by applying
previously seen algorithms to the points located in the inner body.
The disadvantage of this method of convex outline generation is,
however, the separation caused by the convex orthogonality of
some points which are only bound to the generated plan by a line.

This method is similar to the K-dimensional tree algorithm in that
it is also an iterative subdivision of a total area into subunits.
An important difference in the recursive subdivision approach lies
in the fact that there are no predefined points that define the
space. Only a coordinate for the intersection axis point and its
intersection axis is defined. The ratio of the intersections can be
defined or randomly parameterized.
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(b) (c)

Figure 22: (a) 2 Iterations (b) 4 Iterations (c) 6 Iterations

A clear advantage of this algorithm is its simplicity, however,
the ground bodies to be divided are limited to quads and the sub-
divided compartments are quadrilaterals as well. Furthermore, in
the normal iteration, each of the subdivided shapes is subdivided
into the exact same number which provides regularity in the sub-
division but at the same time complicates variation.

Bent Bisection

Since this method is based on the repetition of subdivision algo-
rithms, the variation by combining different subdivision methods
is virtually indefinite. Even slight modifications such as a ran-
domly determined crease in the division plane can provide amaz-
ing variation. If one or more iterations are replaced by a division
into quads by the centeroid of the form, the regular character of
this recursive subdivision can be varied further.

(b)

Figure 23: (a) Quad And Recursive Subdivision (b) Recursive
Quad Division
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Shape
Grammar

By means of established shape rules and a shape engine which
acts as a selector and interpreter, different shapes can be gen-
erated based on the formulated geometric rules such as orienta-
tion, boolean operations, multiplication and deplacement. To-
gether with a start rule, an indefinite number of transformation
rules and a termination rule, several shapes respecting different
constraints can be generated by serial or parallel iteration. In
this work the parametric shape grammers are of interest, because
here the rules are based on variables and thus a repeated execu-
tion of the generation with randomly generated, but certain limits
located variables by variation of the random seed unpredictable
shapes arise, which however always respect the implied geometric
conditions. Furthermore, it is possible to view the process after
the execution of each stage and thus have a finer choice of the
output geometry. The floor plans generated in this way have the
advantage that the spaces touch each other exactly on one or more
lines, thus allowing further processing in boundary representation.

Figure 24: Shape Grammar Generation

Topologic

Topologic python library is not primarily a shape grammar engine,
but by processing the topological relationships in the geometry, it
is possible to establish shape rules and thus enhance the generated
partitions. The functionality of the TopologicPy library is based
on non manifold topologies similar to boundary representations
and opencascade shapes. The architectural geometry is extremely
simplified and consists only of single layer surfaces. Thanks to the
hierarchical structure of the library, it can easily switch from larger
units like CellComplex, Cell and Cluster to smaller units like faces,
edges and vertex by querying the entire topology. Furthermore, a
major advantage of using topologic is a seamless interface between
geometry processing and environmental simulation such as energy
performance or light simulations thanks to Openstudio, honeybee
and ladybug bindings. However, in terms of floor-plan generation,
the topological analysis capabilities are of primary importance.
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(b) (c)

Figure 25: (a) (b) (¢) Aperture Enhanced Models

If the two-dimensional floor-plan layouts generated by the afore-
mentioned methods are converted into Topologic geometries as a
surface list, a proper data exchange between blender’s sverchok ge-
ometry and the geometry processed by Topologic can be ensured.
Thus, mentioned surfaces are first extruded along the z-axis and
desired space height and registered as cells in a cellcomplex. At
this point it is essential that the space contours touch each other
on at least one side but without overlapping. After the cellcomplex
generation, which is analogous to the apartment generation, the in-
terior and exterior walls of the whole complex can be separated by
parameterizable queries and retrieved with their respective geom-
etry. In the following step it is then possible to retrieve a point on
each wall surface and, in combination with the geometry normal,
to read its corresponding matrix, which in turn allows to gener-
ate parametric window and door surfaces on the walls. Thanks to
topologic’s aperture integration, these openings can then be stored
as surface apertures for each individual wall and integrated into
the cellcomplex.
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Shape
Packing

(b)

Figure 26: (a) (b) Topological Graph To Exterior / Internal Aper-
tures

Through these sequential processes, plausible three-dimensional
apartment models can be generated with integrated circulation
and window openings. Now that the apertures have been inte-
grated into the cellcomplex, any relational connection of the spaces

and apertures can be queried and used for analysis purposes using
the Topologic’s graph function.

The family of shape packing algorithms deals with the topic of
inscribing defined shapes with fixed dimensions into an equally
fixed container. These methods are relevant in connection with
the problem of automated floor-plan generation, since almost all
parameters can be defined in advance. These parameters include

the number of rooms and their exact shape, but also the exact
dimensions of the plan outline.
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(b) (c)

Figure 27: (a) (b) (c) Delaunay Triangulation With Inscribed Cir-
cles

Three families of shape packing problems are distinguished,
those where the container is unlimited and those where the con-
tainer is limited in three or two dimensions. In this work, the
methods of shape packing in two dimensions with limited container
size are of particular importance. In a two-dimensional body tri-
angulated by point projection delaunay, the largest possible circles
can be inscribed in the respective triangles, thus creating a space
division defined by the radius.

(b)

Figure 28: (a) (b) Bin Packing Problem

The bin-packing problem describes the problem of the most
space-efficient packing of an exact number of well-defined rect-
angles in a certain number of containers. Furthermore, the exact
position of the best possible packing of a set of circles with defined
radii can be calculated by a circles in circle packing algorithm.
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Physics
Solver

Figure 29: (a) (b) (c) Circles In Circle Algorithm

Similar to the genetic algorithm variant of floor-plan generation,
physic engines can be used to create different plan layouts. In this
work, Bullet physics was used thanks to its blender integration and
ease of interaction. Required for the successful execution of this
generation method are only the pre-defined single room sizes as
two dimensional geometries in euclidean space. In the next step,
the relation network which is simulated by the attraction network
has to be defined. This mesh should connect the centroids of the
space compartments with each other to avoid undesired results.

(b)

Figure 30: (a) Initial Position (b) Final Position

Thanks to the physic solver, the units can be defined as solid
bodies with active collision, which prevents interpenetration. This
is counteracted by the spring attractions forces that act on the net
lines between the body centers of gravity to different degrees. Dur-
ing the execution of the simulation, the number of solver steps acts
as a time variable and thus the animation can be played. The fi-
nal results generated in this way can vary greatly in their layout
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depending on the start position seed and the random noise seed
which is added to the attraction forces. By varying the spring
forces, the topological relationship between the spaces can be reg-
ulated, thus allowing for diversity in generation.

Advantages of this method are the conclusive results in the tradi-
tional architectural sense and the possibility to define in advance
the individual space dimensions, orientations and their topological
relationships. However, similar to the results of the evolutionary
algorithm, the main disadvantages are an impure end geometry
with minimal distances between the single units and a time and
memory consumption in the simulation process.

Data
Driven
Approaches

Method of
Choice

~L 1=

(b) (c)

Figure 31: (a) (b) Physics Simulation Result Variants (c¢) Simula-
tion With Different Attraction Forces

In the field of computer science, machine learning processes for
architecture generation have been strongly established for several
years. The different approaches vary strongly and therefore also
their output and their application. However, there is an analogy
in all data driven approaches which makes an application to lay-
out generation inappropriate: The learning algorithms of amazing
accuracy are invariably based on a data set from the real world
and thus show a constant variance bias which is caused by the
functionality of such approaches. Either the model to be trained
is directly taught on the basis of selected floor plans that are con-
sidered to be suitable, or a generator designs objects with the help
of random noise, which increasingly develop into apartment floor
plans. However, also here the elementary part of the mechanism
is formed by the discriminator which communicates to the ran-
dom noise generation as feedback how far the generated object
resembles a conventional plan.

In order to generate a comprehensive data set, as many different
floor-plan layout design methods as possible are integrated, as well
as their different variants. At the moment only the KD-Tree and
Voronoi and its derivatives provide satisfying results. Possibly, a
genetic algorithm could increase the variance of these methods by
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Figure 32: Results
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optimizing individual selection characteristics. Furthermore, an
integration of the recursive subdivision method would be conceiv-
able, but its results are similar to those of the KD-Tree, but sur-
passed by the latter because of the adjustability through the seed
points. The remaining methods described have significant draw-
backs that prevent their integration into the dataset generation
process, such as the need for an additional gap removal algorithm
between the individual areas. This is theoretically possible, but is
not necessary at the moment, as it turns out that the dataset is
sufficiently versatile due to a well-considered parameterization of
the variables of the KD-Tree and Voronoi method. As explained
in the next section, the generated geometric data are filtered after
their generation. In order to avoid that a large part is sorted out,
the parameterization must avoid the filter characteristics and, if
necessary, cause a seed change through a feedback.
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VXL

Data

This stage deals with the manipulation of
the geometric data obtained as a result of
the generative phase. Through geomet-
ric operations, the two-dimensional lay-
out plans are first converted into volumet-
rics and stored as a topological cell com-
plex. For this purpose, the data formats
JavaScript Object Notation and boundary
representation will be examined in closer
depth and their structure will be under-
stood in order to understand and exploit
the respective advantages and disadvan-
tages as well as potential possibilities for
data modification through python interac-
tion. For the consideration of which for-
mats are useful for geometry storage, prop-
erties such as: size, compatibility, read-
ability, structure and efficiency will be con-
sidered. In all these considerations, the
most important criteria is the possibility
to process the data in the analysis and
simulation phase and especially in the learn-
ing phase. Once the individual structures
of the formats have been understood, the
filtering process of the collected data set
can begin, whereby the floor plans are au-
tomatically checked and sorted according
to defined architecturally based rules in
order to minimize the error rate in the
learning process and to evaluate the data
set. It is important to distinguish genera-
tion errors caused by inappropriately de-
fined parametric boundaries from techni-
cal errors, as the former can be corrected
by adjusting the basic parameters. The
next step is of high importance, as it in-
volves the addition of apertures such as
doors and windows, which are an elemen-
tary part of the simulation stage. In or-
der to allow the greatest possible variabil-
ity of the dataset, the dimensions, place-
ment and orientation of these elements are
also generated in a parametric way, paying
great attention to the architectural rules
of such placements, but also generating
the greatest possible variety of different
results. Finally, the generated results are
evaluated, possible improvements are iden-
tified and stored as a data set in the ap-
propriate data format.
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Figure 33: Data Augmentation

In order to move from two-dimensional space partition layouts to
apartment volumetries, the surfaces must be extruded along the z-
axis. This step is integrated in the layout generation for simplicity
reasons and is based on the Sverchok node ’extrude region’ which
extrudes the input vertex with its corresponding faces following a
defined matrix. In order to make the visualization of the generated
geometries more truthful, the two-dimensional partition walls gen-
erated in this way are converted to three-dimensional bodies with
a defined thickness using Blender’s integrated solidify modifier in
complex mode. However, this operation is not applied to the vol-
umetries to be stored as this would unnecessarily complicate the
simulation steps in the next stage and increase the data size.

Figure 34: Geometry Generation with Extrusion
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Filtering

After the desired number of apartment geometries has been gener-
ated and saved, it is essential to sort the data by quality attributes
to remove any errors from the dataset, otherwise the simulation
and learning process could produce erroneous results. To achieve
this, the three-dimensional objects are imported parametrically
into Blender using sverchok and topologic. Since topologic’s un-
derstanding of the geometry was used to divide the volumes into
relational elements and each of the appartments should form a cell
complex, each individual file can now be classified as defective or
satisfactory on the basis of simple predefined rules by querying
the desired properties or the defective characteristics. Finally, the
faulty files are removed from the dataset.

Boundary
Representa-
tion

V)

Figure 35: Geometry Filtering

The Brep file format is a geometric description of three-dimensional
bodies and their relation to each other. An essential feature of the
format is the description of the objects by their bounding surfaces
alone, which in the simple example of a rock consist of six sur-
faces and in a sphere model of only one surface. The individual
elements are divided into sub-shapes by their topology and can
thus be adequately described by seven individual elements such as
vertex, edge, wire, face, shell, solid and compound solid. Thus it
is possible to describe and store complex bodies by assemblies of
simpler bodies using boolean operations.

CASCADE Topology V1, (c) Matra-Datavision
Locations O

Curve2ds 4

1 0.4099 0.8804 -1 0
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87 0101100

g +8 0 +6 0 +4 0 +3 0 *
89 Fa

90 0 1e-07 1 O

91

92 0101000

93 +2 0 *

94

95 +1 0
Listing 1: BREP Example

The Python library Topologic bases its basic functions on a
similar abstraction as the Boundaryrepresentation partitioning method,
making data storage in Brep format the most obvious and effective
method of geometry description. To be more precise, Topologic’s
geometry manipulation is based on the 3D modeling kernel open-
CASCADE Technology and is therefore bound to solidmodeling
in its functionality. The element subdivision is basically only dis-
tinguished by the naming of the different elements. Thus, a solid
represents a cell unit in topologic, a solid assembly becomes a cell
complex under the condition that any volume is contiguous or has
an edge or vertex in common and a collection of cell complexes
without intersection is described as a cluster.

JSON The open standard file format JavaScript Object Notation is a
data structure that allows to store several different dictionaries
and arrays in human readable form. Due to its intuitive structure,
JSON files have found wide use in web and API exchanges, as
individual keys and values can be retrieved through simple queries.
Furthermore, contrary to the assumption, it is a language-native
file format and thus enables a flawless cross-language and cross-
program exchange of information.

1 q

2 "firstName": "John",

3 "lastName": "Smith",

4 "isAlive": true,

5 "age": 27,

6 "address": {

7 "streetAddress": "21 2nd Street",
8 "city": "New York",

9 "state": "NY",

10 "postalCode": "10021-3100"
11 },

12 "phoneNumbers": [

13 {

14 "type": "home",

15 "number": 212 555 1234
16 }:

17 {

18 "type": "office",

19 "number": "646 555-4567"
20 }

21 1,

22 "children": I[],

23 "spouse": null

24 }

Listing 2: JSON Example

The file example demonstrates the storage of personal infor-
mation where each individual value is assigned to a key and can
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Topologic

be retrieved just as easily with the help of this key. Furthermore,
in this example, individual dictionaries are combined into arrays
which thus form the values for higher-level keys and thereby facil-
itate the structure of the file.

As already described in the Brep section, the Topologic library
is based on OpenCASCADE technology, which in turn is based
on the Boundary representation model. Thus, in Topologic it is
possible to decompose architectural volumes into their individual
elements and to query these elements on request using defined cri-
teria. It is interesting that it is also possible to trace the relations
of the individual elements and their connections and thus it is pos-
sible to query without problems, for example, the fastest way from
room A to room B without having to go through room C or which
rooms with south windows are adjacent to room C and room D.
Of course, such topological analyses are just as easy to perform
manually for less extensive architectural objects, but topologic’s
strength lies in larger projects and parametric analyses such as in
the case of this work.

Apertures

Essential for meaningful energy and light simulations are apertures
like windows and doors, which are currently missing in the gen-
erated layouts. With the help of Sverchok it is relatively easy to
cut rectangular holes in the two-dimensional partition and exterior
walls, but this would only complicate the geometry unnecessarily
by converting previously rectangular walls into polygons. The so-
lution to this problem and the architecturally sensible placement
of apertures, since not every room has to be connected to every
adjacent room, can again be found in the topologic python library.
It is possible to calculate the minimum spanning tree of the con-
nection graph of all rooms and thus obtain a list of those walls
where a door leads to an optimal circulation through the apart-
ment. Furthermore, topologic can store apertures in its geometry
as additional brep data without affecting the basic geometry.

Structure
[
{
"brep": "topology_00001",
"cellApertures": [],
"cellDictionaries": [
{

"dictionary": {
"area": 33.44,
"id": 0,

"type": "room"

3,

"selector": [
1.491212715639101,
0.18688301956760373,
1.25

1

},
{
"dictionary": {
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"area": 14.2,
"id": 1,
"type": "room"

},

"selector": [
2.5635190468646725,
-3.0991602704456733,
1.25

"dictionary": {
"area": 34.79,
"id": 2,
"type": "room"

},

"selector": [
-2.4800350291326527,
1.085227288601124,
1.2500000000000002

"dictionary": {
"id": 1,
"rooms": 3,
"surface": 82.43,
IltypeH: llflat n

}’

"edgeApertures": [],
"edgeDictionaries": [],
"faceApertures": [

{

~
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"brep": "topology_00002",

"dictionary": {
"id": 0,
'ltypell : n door"

"brep": "topology_00003"
"dictionary": {

"id": 1,

thpe": Hdoorﬂ

>

"brep": "topology_00004",

"dictionary": {
"id": 0,
"type": "window"

"brep": "topology_00005"
"dictionary": {

"id": 1,

"type": "window"

>

"brep": "topology_00006",

"dictionary": {
"id": 2,
"type": "window"
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87
88
89
90
91

}

]’

"faceDictionaries": [],
"vertexApertures": [],
"vertexDictionaries": []

Listing 3: Topologic JSON Example

This example shows that for each wall with a window and a
door a separate Brep file is referenced which contains the geometry
of the respective aperture. Furthermore, added dictonarries are
visible, such as individual identification numbers of the elements
as well as type information or room sizes in square meters.

Results

The generated end results show a great variance in shape, number
of rooms, space allocation and layouts. Furthermore, the gener-
ated doors describe in most cases an architecturally logical circu-
lation path and form interesting results in all cases. The windows
are also generated with great variance, but are currently still rel-
atively arbitrary and not in correlation with the room sizes, but
limited only by the available facade area. This should be reme-
died by integrating the room size and topological position of the
adjacent room into the generation formula.

(b)

Figure 36: (a) (b) KD-Tree Variants
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(a) (b)

Figure 37: (a) (b) Deformed KD-Tree Variants

(a) (b)

Figure 38: (a) Rectangular Voronoi Variant (b) Deformed Voronoi
Variant
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(a) (b)

Figure 39: (a) (b) Voronoi Variants
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Analysis

Due to time constraints, the data evalua-
tion stage will not be an integrated part of
this work, but will constitute the main fo-
cus of the following work. Furthermore, in
all preceding steps the possibility of data
set evaluation by means of simulations and
analyses was included as a relevant method
of evaluation. Thus, the stored geometries
consist of non-manifold geometry bound-
ary representations which are well suited
for environemental and topological anal-
ysis and furthermore, care was taken to
keep the data size of the individual archi-
tectural objects and their geometries as
small as possible. By storing typologies,
individual identification numbers, geomet-
ric characteristics and geometric coordi-
nates in the geometry JSON file as key
value dictionary pairs, these properties can
be queried in the analysis stage in an ef-
fective way. Possible analysis approaches
include energetic analysis using Energy-
Plus, light analysis using Radiance, fluid
dynamics using Openfoam, finite element
analysis using Elmer, acoustics using I-
Simpa, crowd simulation using vadere. Fur-
thermore, topological analyses can be per-
formed with Topologic and eventually ad-
ditional simulations like firedynamics with
FDS. A special focus will be put on graph-
based analysis of geometric units, as this
has proven to be a promising topological
analysis option and allows several different
graph machine learning methods as well
as data storage in multidimensional graph
datasets. Each of the different approaches
also requires knowledge from related fields
such as physics and chemistry, which must
be acquired for successful evaluation and
execution of the simulation.

After the completion of the simulation and
analysis stage, the individual data with
their evaluation results should be combined
in an optimal way and thus complement
the data set with labels. This requires an
understanding of data set manipulation as
well as a general understanding of data
structure.
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Figure 40: Simulation Libraries
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ENERGY PERFORMANCE: 0.8
DAYLIGHT FACTOR: 0.6
LAYOUT RATING: 0.3
THERMAL COMFORT: 0.6
LIGHTNING COMFORT: 0.4
ACOUSTIC COMFORT: 0.9

Figure 41: Expected Result

In theory, each of the individual apartment geometries should
be evaluated using a variety of simulation methods and provide
an indication of its performance in the respective areas. Thus,
geometric data is given meaning and can be used in the learning
phase as training data for the machine learning and training. In
the most favorable case, this is represented by a factor ranging
from zero to one, which provides information about the subject
matter under investigation and the performance quotient achieved.
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Learning

After the data set has been supplemented
with the corresponding evaluation labels,
it will be possible to analyze the relation-
ship between the basic data and the achieved
score using machine learning. Like the
analysis step, the model training will not
be part of this work but will be explored in
detail as a separate topic in the following
work. Nevertheless, the generation of the
synthetic data set and its geometric data
manipulation is the fundamental building
block for a successful application of ma-
chine learning processes.

The exact methodology of the training stage
cannot be defined at this stage, as the
evaluation has not yet started and the train-
ing method and different ML approaches
are highly dependent on the nature of the
datasets. Basically, it is planned to exper-
iment with a variety of different methods
and approaches with diverse data to com-
pare their performance, accuracy and re-
sults as well as potential applications.
This stage requires an extensive study of
various computer science fundamentals to
evaluate which method can lead to rele-
vant results and in subsequent steps how
the selected methods can be applied in a
practical case. For this purpose a familiar-
ization with file types like: CSV, GraphDB,
Neo4j, SQL, JSON and DGCNN, data ma-
nipulation and visualization tools like Pan-
das, Numpy, matplotlib, pickle and math-
utils, machine learning libraries like Ten-
sorflow, pytorch and scikit-learn. An es-
sential part of this stage will be the ex-
change with professionals from the com-
puter science field and feedback in vari-
ous communities, since a fundamental ba-
sic understanding must be learned to ef-
fectively and properly arrive at the desired
end result, an optimization in the architec-
tural design process through instant feed-
back on the quality of different character-
istics of the object to be designed.



Conclusion

The goal of generating an architecturally
sophisticated as well as diverse synthetic
apartment dataset has been achieved and
is clearly reflected in the visualization of
the results. Furthermore, knowledge about
the use of essential geometry processing
programs as well as mathematical and topo-
logical python libraries was gained, which
led to an optimization of the overall pro-
cess through continuous evaluation of the
generated results. An important require-
ment for the methodoligy of this work was
to use only open-source information such
as code and libraries or projects. This did
not present any obstacles in the overall
work, but in some cases even enabled a
direct exchange with the respective devel-
opment teams, whereby possible problems
could be solved and suggestions for im-
provement of the used tools could be im-
plemented. The essential steps of the sim-
ulation and the machine learning model
training have not yet been started in this
work, however, the essential foundations
to start these steps without difficulties in
the following work have been set.

As already described in the end of the data
chapter, the final apartment floor plans
show architectural plausibility as well as
great variance with respect to important
characteristics. Furthermore, an impor-
tant requirement of the methodology was
to reduce the time and computational de-
mands by reducing the data to the most
essential, which was achieved by using the
topologic library and data storage in bound-
ary representation format as well as JSON
format for reference structure. Concern-
ing the form generation process it is to be
said that attention was paid to a collection
as different as possible methods and ap-
proaches of importance. It is regrettable
that in the end only the Voronoi and K-D
Tree algorithms and their derivatives were
used for the final space partitioning gen-
eration.




Discussion

Further
Readings

Future
Works

It remains debatable whether the unusual forms of the individ-
ual apartment floor plans are evidence of architectural diversity
or whether they are rather unconventional forms contrary to the
western building tradition. In fact, some of the generated forms
have spaces or facades that meet in non-orthogonal angles. In my
opinion, this is welcome as long as these angles do not go beyond
a certain extreme that would make the living space uninhabitable.
Furthermore, the interior spaces created by the voronoi diagram
subdivision are often pentagonal or even beyond. This is also con-
sidered an unusual design, but in my opinion it does not present
any disadvantages in use as long as the polygonality does not re-
sult in excessively sharp angles. Some of the unbounded Voronoi
floor plans show very irregular facade outlines which makes sense
only in free and non-oriented project environments, this should
be noted as information and distinguishing characteristic in the
database in order to consider possible neighborhood influences in
the energy simulation in the simulation step.

In some generated cases, the main circulation graph crosses small
spaces that could essentially be used only as toilets, bathrooms or
storage rooms, thus creating an architecturally unsound trajectory.
This should be taken into account in the upcoming work within
the filtering process and should be considered as an exclusion cri-
terion for just such apartment layouts. In general, the geometric
generation process should include a rough idea of the number of
rooms and especially the use of rooms, such as the generation of
commodities and sanitary units, which can be seen as essentially
constant with insignificantly varying apartment sizes. This would
also allow the use of adapted apertures such as a variation in the
window position for the toilets or even the size of the windows in a
possible storage room. Each of these changes seems to be feasible
and unproblematic, but requires a rule-based intervention in the
generation process that could induce traditional biases and thus
jeopardize the variability of the dataset. Therefore, it is impor-
tant to consider neutral information and examples when applying
these rules.

Since this work is based to a large extent on the Python library
topologic developed by Prof. dr. Wassim Jabi, which is currently
evolving at an astonishing pace and acquiring new features on
a daily basis, it is recommended to follow Jabi’s publications and
code repositories. Furthermore, the OpenSource architecture com-
munity community.osarch.com provided an essential platform for
information exchange between like-minded people and hosts infor-
mation of significant value.

As already mentioned several times in the course of the research,
this work is considered as a preliminary study for the following
master thesis, which will deal with the following steps of the simu-
lation and the learning process and finally with their function and
application. In the following thesis the findings of this work will
be revisited and possible improvements will be made in order to
have an optimal data set as a starting condition and basis. Fur-
thermore, we will deal with the copmuterscience related topics as
well as with the ecology related simulations.
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trieved from https://numpy.org/
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LaTeX (Version 2022.02.24) [Computer Software]. (1984).
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Inkscape (Version 1.1.2) [Computer Software]. (2003). Re-
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Matplotlib (Version 3.5.1) [Computer Software]. (2003).
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